METABOLOMIC PREDICTORS OF CARDIOVASCULAR COMPLICATIONS IN NEWLY DETECTED NON-SMALL CELL LUNG CANCER

УДК 616.24-006.6:616.1-071

Authors

  • Temirlan S. Zarkhanov Novosibirsk National Research State University, Novosibirsk, Russia Email: lozhkina.n@mail.ru
  • Natalia G. Lozhkina Novosibirsk National Research State University, Novosibirsk; Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia https://orcid.org/0000-0002-4832-3197 Email: lozhkina.n@mail.ru

DOI:

https://doi.org/10.31684/25418475-2024-1-128

Keywords:

lung cancer, cardiovascular disease, non-small cell lung cancer, metabolomic study

Abstract

Lung cancer, the most prevalent malignant neoplasm globally, predominantly impacts elderly individuals and smokers with concurrent cardiovascular conditions. The presence of comorbidities can significantly influence prognosis and treatment complexity, highlighting the need for innovative diagnostic, predictive, and personalized treatment tools for this patient cohort. This study draws upon information from PubMed, Google Scholar, and E-library databases to inform its findings.

Downloads

Download data is not yet available.

Author information

Temirlan S. Zarkhanov,
Novosibirsk National Research State University, Novosibirsk, Russia

6th year student of the Zelman Institute of Medicine and Psychology, Novosibirsk National Research State University, Novosibirsk.
E-mail: lozhkina.n@mail.ru.

Natalia G. Lozhkina,
Novosibirsk National Research State University, Novosibirsk; Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia

Dr. Sci. (Med.), Professor, Head of the group "Clinical and Experimental Cardiology", Federal Research Center for Basic and Translational Medicine; Professor, Department of Immunology, Novosibirsk National Research State University; Cardiologist, Curator of the Department for the Treatment of Patients with Acute Coronary Syndrome, Municipal Clinical Hospital No. 1, Novosibirsk.
E-mail: lozhkina.n@mail.ru.
https://orcid.org/0000-0002-4832-3197.

References

  • Haznadar M. et al. Urinary metabolite risk biomarkers of lung cancer: A prospective cohort study. Cancer Epidemiology Biomarkers and Prevention. American Association for Cancer Research Inc. 2016; 25(6): 978-986. https://doi.org/10.1158/1055-9965.EPI-15-1191
  • American Cancer Society. Global cancer facts & figures. 4th edition. Atlanta, GA: American Cancer Society. 2018.
  • Bray F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. Wiley. 2018; 68(6): 394-424. https://doi.org/10.3322/caac.21492
  • Federal State Statistics Service (Rosstat). Zdravookhranenie v Rossii 2019: statistical compendium [Internet]. Moscow, 2019: 170. (In Russ.)
  • Fattakhov T.A., Mironova A.A., Pyankova A.I., Shakhzadova A.O. Mortality from neoplasms in Russia in 1965-2019: main structural changes and trends. Siberian Journal of Oncology. 2021; 20(4): 5-20. https://doi.org/10.21294/1814-4861-2021-20-4-5-20 (In Russ.)
  • Kaprin A.D., Starinsky V.V., Shakhzadova A.O. Malignant neoplasms in Russia in 2019 (morbidity and mortality). Moscow, 2020: 252. (In Russ.)
  • American Cancer Society. Cancer facts & figures 2019. Atlanta, GA: American Cancer Society; 2019.
  • Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2019. CA Cancer J Clin. Wiley. 2019; 69(1): 7-34. https://doi.org/10.3322/caac.21551
  • Postmus P.E. et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology. Oxford University Press. 2017; 28: iv1-iv21. https://doi.org/10.1093/annonc/mdx222
  • Koene R.J. et al. Shared risk factors in cardiovascular disease and cancer. Circulation. 2016; 133(11). https://doi.org/10.1161/CIRCULATIONAHA.115.020406
  • Mehta L.S. et al. Cardiovascular Disease and Breast Cancer: Where These Entities Intersect: A Scientific Statement From the American Heart Association. Circulation. 2018; 137(8). https://doi.org/10.1161/CIR.0000000000000556
  • Al-Kindi S.G., Oliveira G.H. Prevalence of Preexisting Cardiovascular Disease in Patients with Different Types of Cancer the Unmet Need for Onco-Cardiology. Mayo Clin Proc. 2016; 91(1). https://doi.org/10.1016/j.mayocp.2015.09.009
  • Islam K.M.M. et al. Comorbidity and survival in lung cancer patients. Cancer Epidemiology Biomarkers and Prevention. 2015; 24(7). https://doi.org/10.1158/1055-9965.EPI-15-0036
  • Iachina M. et al. The Effect of Different Comorbidities on Survival of Non-small Cells Lung Cancer Patients. Lung. 2015; 193(2). https://doi.org/10.1007/s00408-014-9675-5
  • Rami-Porta R. et al. The IASLC lung cancer staging project: The new database to inform the eighth edition of the TNM classification of lung cancer. Journal of Thoracic Oncology. Elsevier Inc. 2014; 9(11): 1618-1624. https://doi.org/10.1097/JTO.0000000000000334
  • Chansky K. et al. The IASLC Lung Cancer Staging Project: External Validation of the Revision of the TNM Stage Groupings in the Eighth Edition of the TNM Classification of Lung Cancer. Journal of Thoracic Oncology. Elsevier Inc. 2017; 12(7): 1109-1121.
  • Wahbah M. et al. Changing trends in the distribution of the histologic types of lung cancer: a review of 4,439 cases. Ann Diagn Pathol. 2007; 11(2): 89-96. https://doi.org/10.1016/j.anndiagpath.2006.04.006
  • Pao W., Girard N. Review New driver mutations in non-small-cell lung cancer. 2011. https://doi.org/10.1016/S1470-2045(10)70087-5
  • Hirsch F.R. et al. Lung cancer: current therapies and new targeted treatments. The Lancet. Lancet Publishing Group. 2017; 389(10066): 299-311. https://doi.org/10.1016/S0140-6736(16)30958-8
  • Zhu Q.-G. et al. Driver genes in non-small cell lung cancer: Characteristics, detection methods, and targeted therapies. 2017; 8(34): 57680-57692. https://doi.org/10.18632/oncotarget.17016
  • Jones A., Gulbis A., Baker E.H. Differences in tobacco use between Canada and the United States. International Journal of Public Health. 2010; 55(3). https://doi.org/10.1007/s00038-009-0101-3
  • Erratum: Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016 (The Lancet (2017) 390(10100) (1151-1210) (S0140673617321529) (10.1016/S0140-6736(17)32152-9)). The Lancet. 2017; 390: 10106.
  • Dawber T.R. et al. Some factors associated with the development of coronary heart disease: six years’ follow-up experience in the Framingham study. Am J Public Health. 1959; 49. https://doi.org/10.2105/AJPH.49.10.1349
  • Masoudkabir F. et al. Cardiovascular disease and cancer: Evidence for shared disease pathways and pharmacologic prevention. Atherosclerosis. 2017; 263. https://doi.org/10.1016/j.atherosclerosis.2017.06.001
  • Ligibel J.A. et al. American Society of Clinical Oncology position statement on obesity and cancer. Journal of Clinical Oncology. 2014; 32(31). https://doi.org/10.1200/JCO.2014.58.4680
  • Tourmousoglou C.E., Apostolakis E., Dougenis D. Simultaneous occurrence of coronary artery disease and lung cancer: what is the best surgical treatment strategy? Interactive cardiovascular and thoracic surgery. 2014; 19(4). https://doi.org/10.1093/icvts/ivu218
  • Kreatsoulas C., Anand S.S., Subramanian S. V. An emerging double burden of disease: The prevalence of individuals with cardiovascular disease and cancer. J Intern Med. 2014; 275(5). https://doi.org/10.1111/joim.12165
  • Inohara T., Endo A., Melloni C. Unmet Needs in Managing Myocardial Infarction in Patients With Malignancy. Frontiers in Cardiovascular Medicine. 2019; 6. https://doi.org/10.3389/fcvm.2019.00057
  • Hayat M.J. et al. Cancer Statistics, Trends, and Multiple Primary Cancer Analyses from the Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist. 2007; 12(1). https://doi.org/10.1634/theoncologist.12-1-20
  • Little A.G. et al. National survey of non-small cell lung cancer in the United States: Epidemiology, pathology and patterns of care. Lung Cancer. 2007; 57(3). https://doi.org/10.1016/j.lungcan.2007.03.012
  • Extermann M. Interaction between comorbidity and cancer. Cancer Control. 2007; 14(1). https://doi.org/10.1177/107327480701400103
  • Battafarano R.J. et al. Impact of comorbidity on survival after surgical resection in patients with stage I non-small cell lung cancer. Journal of Thoracic and Cardiovascular Surgery. 2002; 123(2). https://doi.org/10.1067/mtc.2002.119338
  • Janssen-Heijnen M.L.G. et al. Prevalence of co-morbidity in lung cancer patients and its relationship with treatment: A population-based study. Lung Cancer. 1998; 21(2). https://doi.org/10.1016/S0169-5002(98)00039-7
  • Ambrogi V. et al. The impact of cardiovascular comorbidity on the outcome of surgery for stage I and II non-small-cell lung cancer. European Journal of Cardio-thoracic Surgery. 2003; 23(5). https://doi.org/10.1016/S1010-7940(03)00093-9
  • Kocher F. et al. Cardiovascular comorbidities and events in NSCLC: Often underestimated but worth considering. Clin Lung Cancer. 2015; 16(4). https://doi.org/10.1016/j.cllc.2014.12.007
  • Kravchenko J. et al. Cardiovascular comorbidities and survival of lung cancer patients: Medicare data based analysis. Lung Cancer. 2015; 88(1). https://doi.org/10.1016/j.lungcan.2015.01.006
  • Pater J.L., Loeb M. Nonanatomic prognostic factors in carcinoma of the lung. A multivariate analysis. Cancer. 1982; 50(2). https://doi.org/10.1002/1097-0142(19820715)50:2%3C326::AID-CNCR2820500227%3E3.0.CO;2-G
  • Piccirillo J.F., Feinstein A.R. Clinical symptoms and comorbidity: Significance for the prognostic classification of cancer. Cancer. 1996; 77(5). https://doi.org/10.1002/(SICI)1097-0142(19960301)77:5%3C834::AID-CNCR5%3E3.3.CO;2-Z
  • Beauchamp G L.J.S. articles by ’Lassonde J.L.J.L.F.L.A. Lung cancer and peripheral vascular surgery.
  • Duque J.L. et al. Early complications in surgical treatment of lung cancer: A prospective, multicenter study. Annals of Thoracic Surgery. 1997; 63(4). https://doi.org/10.1016/S0003-4975(97)00051-9
  • Voets A.J., Joesoef K.S., Van Teeffelen M.E.J.M. Synchroneously occurring lung cancer (stages I-II) and coronary artery disease: Concomitant versus staged surgical approach. European Journal of Cardio-thoracic Surgery. 1997; 12(5). https://doi.org/10.1016/S1010-7940(97)00240-6
  • Batra A. et al. Impact of pre-existing cardiovascular disease on treatment patterns and survival outcomes in patients with lung cancer. BMC Cancer. 2020; 20(1). https://doi.org/10.1186/s12885-020-07487-9
  • Tseng C.C. et al. Time courses and value of circulating microparticles in patients with operable stage non-small cell lung cancer undergoing surgical intervention. Tumor Biology. Springer Science and Business Media B.V. 2016; 37(9): 11873-11882. https://doi.org/10.1007/s13277-016-5047-5
  • Pirozynski M. 100 years of lung cancer. Respiratory Medicine. W.B. Saunders Ltd. 2006; 100(12): 2073-2084. https://doi.org/10.1016/j.rmed.2006.09.002
  • Khakimov B. et al. From metabolome to phenotype: GC-MS metabolomics of developing mutant barley seeds reveals effects of growth, temperature and genotype. Sci Rep. Nature Publishing Group. 2017; 7(1). https://doi.org/10.1038/s41598-017-08129-0
  • Robles A.I., Harris C.C. Integration of multiple "OMIC" biomarkers: A precision medicine strategy for lung cancer. Lung Cancer. 2017; 107. https://doi.org/10.1016/j.lungcan.2016.06.003
  • Tumas J. et al. Metabolomics in pancreatic cancer biomarkers research. Medical Oncology. 2016; 33(12). https://doi.org/10.1007/s12032-016-0853-6
  • Nagana Gowda G.A. et al. Visualization of bile homeostasis using 1H-NMR spectroscopy as a route for assessing liver cancer. Lipids. 2009; 44(1). https://doi.org/10.1007/s11745-008-3254-6
  • Claudino W.M. et al. Metabolomics: Available results, current research projects in breast cancer, and future applications. Journal of Clinical Oncology. 2007; 25(19). https://doi.org/10.1200/JCO.2006.09.7550
  • DeFeo E.M. et al. A decade in prostate cancer: From NMR to metabolomics. Nature Reviews Urology. 2011; 8(6). https://doi.org/10.1038/nrurol.2011.53
  • Fan T.W.M. et al. Altered regulation of metabolic pathways in human lung cancer discerned by 13C stable isotope-resolved metabolomics (SIRM). Mol Cancer. 2009; 8. https://doi.org/10.1186/1476-4598-8-41
  • Deja S. et al. Metabolomics provide new insights on lung cancer staging and discrimination from chronic obstructive pulmonary disease. J Pharm Biomed Anal. 2014; 100. https://doi.org/10.1016/j.jpba.2014.08.020
  • Calderón-Santiago M. et al. Human sweat metabolomics for lung cancer screening. Anal Bioanal Chem. 2015; 407(18). https://doi.org/10.1007/s00216-015-8700-8
  • Cameron S.J.S. et al. The metabolomic detection of lung cancer biomarkers in sputum. Lung Cancer. 2016; 94. https://doi.org/10.1016/j.lungcan.2016.02.006
  • Gottschalk M. et al. Metabolomic studies of human lung carcinoma cell lines using in vitro 1H NMR of whole cells and cellular extracts. NMR Biomed. 2008; 21(8). https://doi.org/10.1002/nbm.1258
  • Horváth I. et al. Exhaled biomarkers in lung cancer. European Respiratory Journal. 2009; 34(1). https://doi.org/10.1183/09031936.00142508
  • Li Y. et al. Serum metabolic profiling study of lung cancer using ultra high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2014; 966. https://doi.org/10.1016/j.jchromb.2014.04.047
  • Roberts L.D. et al. Targeted metabolomics. Curr Protoc Mol Biol. 2012; 1(SUPPL.98). https://doi.org/10.1002/0471142727.mb3002s98
  • Vrhovsek U. et al. A versatile targeted metabolomics method for the rapid quantification of multiple classes of phenolics in fruits and beverages. Journal of Agricultural and Food Chemistry. 2012; 60(36). https://doi.org/10.1021/jf2051569
  • Cai Y., Zhou Z., Zhu Z.J. Advanced analytical and informatic strategies for metabolite annotation in untargeted metabolomics. TrAC – Trends in Analytical Chemistry. 2023; 158. https://doi.org/10.1016/j.trac.2022.116903
  • Guo Y. et al. Probing gender-specific lipid metabolites and diagnostic biomarkers for lung cancer using Fourier transform ion cyclotron resonance mass spectrometry. Clinica Chimica Acta. 2012; 414. https://doi.org/10.1016/j.cca.2012.08.010
  • Pamungkas A.D. et al. High resolution metabolomics to discriminate compounds in serum of male lung cancer patients in South Korea. Respir Res. 2016; 17(1). https://doi.org/10.1186/s12931-016-0419-3
  • Strongman H. et al. Does Cardiovascular Mortality Overtake Cancer Mortality During Cancer Survivorship? An English Retrospective Cohort Study. JACC CardioOncol. 2022; 4(1). https://doi.org/10.1016/j.jaccao.2022.01.102
  • Imperatori A. et al. Atrial fibrillation after pulmonary lobectomy for lung cancer affects long-term survival in a prospective single-center study. J Cardiothorac Surg. 2012; 7(1). https://doi.org/10.1186/1749-8090-7-4
  • Onaitis M. et al. Risk factors for atrial fibrillation after lung cancer surgery: Analysis of the society of thoracic surgeons general thoracic surgery database. Annals of Thoracic Surgery. 2010; 90(2). https://doi.org/10.1016/j.athoracsur.2010.03.100
  • Cardinale D. et al. Prevention of Atrial Fibrillation in High-risk Patients Undergoing Lung Cancer Surgery: The PRESAGE Trial. Ann Surg. 2016; 264(20). https://doi.org/10.1097/SLA.0000000000001626
  • Smilowitz N.R. et al. Perioperative major adverse cardiovascular and cerebrovascular events associated with noncardiac surgery. JAMA Cardiol. 2017; 2(2). https://doi.org/10.1001/jamacardio.2016.4792
  • Darby S.C. et al. Risk of Ischemic Heart Disease in Women after Radiotherapy for Breast Cancer. New England Journal of Medicine. 2013; 368(11). https://doi.org/10.1056/NEJMoa1209825
  • Van Nimwegen F.A. et al. Radiation dose-response relationship for risk of coronary heart disease in survivors of Hodgkin lymphoma. Journal of Clinical Oncology. 2016; 34(3). https://doi.org/10.1200/JCO.2015.63.4444
  • Atkins K.M. et al. Cardiac Radiation Dose, Cardiac Disease, and Mortality in Patients With Lung Cancer. J Am Coll Cardiol. 2019; 73(23). https://doi.org/10.1016/j.jacc.2019.03.500
  • Dess R.T. et al. Cardiac events after radiation therapy: Combined analysis of prospective multicenter trials for locally advanced non-small-cell lung cancer. Journal of Clinical Oncology. 2017; 35(13). https://doi.org/10.1200/JCO.2016.71.6142
  • Wang K. et al. Cardiac toxicity after radiotherapy for stage III non-small-cell lung cancer: Pooled analysis of dose-escalation trials delivering 70 to 90 Gy. Journal of Clinical Oncology. 2017; 35(13). https://doi.org/10.1200/JCO.2016.70.0229
  • Yegya-Raman N. et al. Dosimetric Predictors of Symptomatic Cardiac Events After Conventional-Dose Chemoradiation Therapy for Inoperable NSCLC. Journal of Thoracic Oncology. 2018; 13(10). https://doi.org/10.1016/j.jtho.2018.05.028
  • Stam B. et al. Dose to heart substructures is associated with non-cancer death after SBRT in stage I–II NSCLC patients. Radiotherapy and Oncology. 2017; 123(3). https://doi.org/10.1016/j.radonc.2017.04.017
  • Zaborowska-Szmit M. et al. Cardiovascular complications of systemic therapy in non-small-cell lung cancer. J Clin Med. 2020; 9(5). https://doi.org/10.3390/jcm9051268
  • Moore R.A. et al. High incidence of thromboembolic events in patients treated with cisplatin-based chemotherapy: A large retrospective analysis. Journal of Clinical Oncology. 2011; 29(25). https://doi.org/10.1200/JCO.2011.35.5669
  • Pande A. et al. Hypertension secondary to anti-angiogenic therapy: Experience with bevacizumab. Anticancer Res. 2007; 27(5B).
  • Sandler A.B., Johnson D.H., Herbst R.S. Anti-vascular endothelial growth factor monoclonals in non-small cell lung cancer. Clinical Cancer Research. 2004; 10(12 II). https://doi.org/10.1158/1078-0432.CCR-040023
  • Choueiri T.K. et al. Congestive heart failure risk in patients with breast cancer treated with bevacizumab. Journal of Clinical Oncology. 2011; 29(6). https://doi.org/10.1200/JCO.2010.31.9129
  • Scappaticci F.A. et al. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J Natl Cancer Inst. 2007; 99(16). https://doi.org/10.1093/jnci/djm086
  • Rao V.U. et al. Clinical Approach to Cardiovascular Toxicity of Oral Antineoplastic Agents: JACC State-of-the-Art Review. Journal of the American College of Cardiology. 2021; 77(21). https://doi.org/10.1016/j.jacc.2021.04.009
  • Anand K. et al. Osimertinib-Induced Cardiotoxicity: A Retrospective Review of the FDA Adverse Events Reporting System (FAERS). JACC CardioOncol. 2019; 1(2).
  • Tartarone A. et al. Crizotinib-induced cardiotoxicity: The importance of a proactive monitoring and management. Future Oncology. 2015; 11(14). https://doi.org/10.2217/fon.15.47
  • Morcos P.N. et al. Effect of alectinib on cardiac electrophysiology: Results from intensive electrocardiogram monitoring from the pivotal phase II NP28761 and NP28673 studies. Cancer Chemother Pharmacol. 2017; 79(3). https://doi.org/10.1007/s00280-017-3253-5
  • Gettinger S.N. et al. Activity and safety of brigatinib in ALK-rearranged non-small-cell lung cancer and other malignancies: a single-arm, open-label, phase 1/2 trial. Lancet Oncol. 2016; 17(12). https://doi.org/10.1016/S1470-2045(16)30392-8
  • Escudier M. et al. Clinical features, management, and outcomes of immune checkpoint inhibitor-related cardiotoxicity. Circulation. 2017; 136(21). https://doi.org/10.1161/CIRCULATIONAHA.117.030571
  • Drobni Z.D. et al. Association between Immune Checkpoint Inhibitors with Cardiovascular Events and Atherosclerotic Plaque. Circulation. 2020; 142(24). https://doi.org/10.1161/CIRCULATIONAHA.120.049981
  • Salem J.E. et al. Spectrum of cardiovascular toxicities of immune checkpoint inhibitors: A pharmacovigilance study. Lancet Oncol. 2018; 19(12). https://doi.org/10.1016/S1470-2045(18)30608-9
  • D’Souza M. et al. The risk of cardiac events in patients receiving immune checkpoint inhibitors: a nationwide Danish study. Eur Heart J. 2021; 42(16). https://doi.org/10.1093/eurheartj/ehaa884
  • Thuny F., Naidoo J., Neilan T.G. Cardiovascular complications of immune checkpoint inhibitors for cancer. European Heart Journal. 2022; 43(42). https://doi.org/10.1093/eurheartj/ehac456
  • Zhang L. et al. The Evolving Immunotherapy Landscape and the Epidemiology, Diagnosis, and Management of Cardiotoxicity: JACC: CardioOncology Primer. JACC: CardioOncology. 2021; 3(1). https://doi.org/10.1016/j.jaccao.2020.11.012
  • Rubio-Infante N. et al. Cardiotoxicity associated with immune checkpoint inhibitor therapy: a meta-analysis. Eur J Heart Fail. 2021; 23(10). https://doi.org/10.1002/ejhf.2289
  • Published

    2024-03-25

    How to Cite

    Zarkhanov T. S., Lozhkina N. G. METABOLOMIC PREDICTORS OF CARDIOVASCULAR COMPLICATIONS IN NEWLY DETECTED NON-SMALL CELL LUNG CANCER: УДК 616.24-006.6:616.1-071 // Bulletin of Medical Science, 2024. Vol. 33, № 1. P. 128–135 DOI: 10.31684/25418475-2024-1-128. URL: https://newbmn.asmu.ru/bmn/article/view/673.