CARDIOVASCULAR DISEASE MODELING: A COMPREHENSIVE LITERATURE REVIEW

УДК 615.32:616.63:616-092.9

Authors

DOI:

https://doi.org/10.31684/25418475-2023-4-128

Keywords:

cardiovascular diseases, animal experiments, modeling

Abstract

The scientific literature review describes experimental models of rat and murine cardiovascular diseases. The worldwide prevalence of cardiovascular diseases and associated disability and mortality rates encourage constant drug trials, resulting in a necessity for accurate and effective recreation in animal experiments. The authors, based on experimental data presented in the open literature, reviewed surgical, pharmacological, and alimentary methods for the modeling of cardiovascular diseases, describing their advantages, disadvantages, and applicability.

Downloads

Download data is not yet available.

Author information

Alexander Yu. Zharikov,
Altai State Medical University, Barnaul, Russia

Dr. Sci. (Biol.), Associate Professor, Head of the Department of Pharmacology named after Professor V.M. Brukhanov, Altai State Medical University, Barnaul.
656038, Russia, Altai Krai, Barnaul, Lenina Ave., 40.
E-mail: zharikov_a_y@mail.ru
http://orcid.org/0000-0003-4884-220X

Sergey S. Belokurov,
Altai State Medical University, Barnaul, Russia

Cand. Sci. (Pharm.), Associate Professor of the Department of Pharmacology named after Professor V.M. Brukhanov, Altai State Medical University, Barnaul.
E-mail: ser.j.b.777@mail.ru
https://orcid.org/0000-0002-9425-2668

Alexander A. Melnikov,
Altai State Medical University, Barnaul, Russia

4th year Student, Institute of Clinical Medicine, Altai State Medical University, Barnaul.
E-mail: n27b2001@gmail.com
https://orcid.org/0009-0008-6383-5431

Elizaveta K. Semeryanova,
Altai State Medical University, Barnaul, Russia

4th year Student of the Institute of Clinical Medicine, Altai State Medical University, Barnaul.
E-mail: liiikaaaaz@mail.ru
https://orcid.org/0009-0008-6383-5431

Denis A. Kalin,
Altai State Medical University, Barnaul, Russia

4th year Student, Institute of Pediatrics, Altai State Medical University, Barnaul.
E-mail: kalin.02@mail.ru
https://orcid.org/0009-0001-5362-0700

Serafim A. Garanin,
Altai State Medical University, Barnaul, Russia

4th year Student of the Institute of Clinical Medicine, Altai State Medical University, Barnaul.
E-mail: simagaranin@mail.ru
https://orcid.org/0009-0004-2666-6836

References

  • Glushenko V.A., Irklienko V. K. Cardiovascular morbidity – one of the most vital problems of modern health care. Medicine and health care organization. 2019; 4(1): 58-64. [In Russ.]
  • Surikova N.A. Cardivascular risk factors and their combinations in rural population: a literature review. Almanac of young science. 2021; 2(41): 26-31. [In Russ.]
  • Chukanova G.N. Dworacka M., Isakova S.S., Kurmambaev Ye. Zh. Modeling of type 2 diabetes mellitus is a nevessary foundation for study of medicinal products with antidiabetic potency. Science & Healthcare. 2014; 4: 15-21. [In Russ.]
  • Karpov A.A., Ivkin D.Yu., Dracheva A.V., Pitukhina N.N., Uspenskaya Yu.K., Vaulina D.D., Uskov I.S., Eyvazova S.D., Minasyan S.M., Vlasov T.D., Buryakina A.V., Galagudza M.M. Rat model of post-infarct heart failure by left coronary artery occlusion: technical aspects, functional and morphological assessment. Journal Biomed. 2014; 1(3): 32-48. [In Russ.]
  • Kryzhanovskii S.A., Tsorin I.B., Ionova E.O., Stolyaruk V.N., Vititnova M.B., Barchukov V.V., Miroshkina I.A., Sorokina A.V., Kozhevnikova L.M., Durnev A.D. A translational model of chronic heart failure in rats Pathological Physiology and Experimental Therapy, Russian journal. 2018; 62(2): 136-148. [In Russ.]
  • Kazachenko A.A., Okovityy S.V., Kulikov A.N., Ivkin D.Yu., Shustov E.B.. Experimental modeling of chronic warm insufficiency. Journal Biomed. 2013; 1(3): 41–48. [In Russ.]
  • Plechev V.V., Risberg R.Y., Mustafin TI., Oleynik B.A., Dvinskih A.V., Plecheva D.V. Model of acute myocardial infarction. Experimental medicine and biology. 2012; 112-115. [In Russ.]
  • Litvinovich S.N., Rakov A.V., Yorsh I.R. A postinfarction heart failure model on small lab animals. Journal of the Grodno State Medical University. 2011; 2: 23-25. [In Russ.]
  • Grebenchikov O.A., Lobanov A.V., Shayhutdinova E.R., Kuzovlev A.N., Ershov A.V., Likhvantsev V.V. Cardioprotective effect of lithium chloride on a rat model of myocardial infarction. Circulation Pathology and Cardiac Surgery. 2019; 23(2): 43-49. [In Russ.] https://doi.org/10.21688/1681-3472-2019-2-43-49
  • Faghihil M., Mirershadi F., Dehpour A.R, Bazargan M. Preconditioning with acute and chronic lithium administration reduces ischemia/reperfusion injury mediated by cyclooxygenase not nitric oxide synthase pathway in isolated rat heart. European Journal of Pharmacology. 2008; 597(1-3): 57-63. https://doi.org/10.1016/j.ejphar.2008.08.010
  • Gross E.R., Hsu A.K., Gross G.. Opiold-induced cardioprotection occurs via glycogen synthase kinase beta inhibition during reperfusion in intact rat hearts. Circulation Research. 2004; 94(7). https://doi.org/10.1161/01.RES.0000122392.33172.09
  • Kovacs K., Toth A., Deres P., Kalai T., Hideg K., Gallyas F. Jr., Sumegi B. Critical role of PI3-kinase/Akt activation in the PARP inhibitor induced heart function recovery during ischemia-reperfusion. Biochemical Pharmacology. 2006; 71(4): 441-452. https://doi.org/10.1016/j.bcp.2005.05.036
  • Ponomarev G.V., Shmonin A.A., Aliev K.T., Vlasov T.D., Melnikova E.V., Smolko D.G., Skoromets A.A. Experimental model of spinal cord ischemia in rats by occlusion of abdominal aortic below renal arteries. Translational Medicine. 2014; 4: 40-45. [In Russ.]
  • Ku H., Lee S., Wu Y., Yang K., Su M. A model of cardiac remodeling through constriction of the abdominal aorta in rats. J Vis Exp. 2016; 118: 54818. https://doi.org/10.3791/54818-v
  • Boluyt M.O., Robinson K.G., Meredith A.L., Sen S., Lakatta E.G., Crow M.T., Brooks W.W., Conrad C.H., Bing O.H. Heart failure after long-term supravalvular aortic constriction in rats. American Journal of Hypertension. 2005; 18(2 Pt 1): 202-212. https://doi.org/10.1016/j.amjhyper.2004.08.034
  • Kogan M.E., Belov L.N., Leontyeva T.A., Zolotareva A.G. Myocardial pathology modeling on mice using surgical methods. Cardiology. 1977; 17(6): 125-128. [In Russ.]
  • Ovsepyan A.A., Panchenkov D.N., Prokhortchouk E.B., Telegin G.B., Zhigalova N.A., Golubev E.P., Sviridova T.E., Matskeplishvili S.T., Skryabin K.G., Buziashvili U.I. Modeling Myocardial Infarction in Mice: Methodology, Monitoring, Pathomorphology. Acta Naturae. 2011; 1: 114-122. [In Russ.] https://doi.org/10.32607/20758251-2011-3-1-107-115
  • Li D.L., Wang Z.V., Ding G., et al. Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification. Circulation. 2016; 133(17): 1668-1687. https://doi.org/10.1161/CIRCULATIONAHA.115.017443
  • Jensen R.A., Acton E.M., Peters J.H. Doxorubicin cardiotoxicity in the rat: comparison of electrocardiogram, transmembrane potential, and structural effects. Journal of Cardiovascular Pharmacology. 1984; 6(1): 186-200. https://doi.org/10.1097/00005344-198401000-00028
  • Jassal D.S., Han S.Y., Hans C., et al. Utility of tissue Doppler and strain rate imaging in the early detection of trastuzumab and anthracycline mediated cardiomyopathy. Journal of the American Society of Echocardiography. 2009; 22(4): 418-424. https://doi.org/10.1016/j.echo.2009.01.016
  • Nozaki N., Shishido T., Takeishi Y., Kubota I. Modulation of doxorubicin-induced cardiac dysfunction in toll-like receptor-2-knockout mice. Circulation. 2004; 110(18): 2869-2874. https://doi.org/10.1161/01.CIR.0000146889.46519.27
  • Milano G., Raucci A., Scopece A., et al. Doxorubicin and trastuzumab regimen induces biventricular failure in mice. Journal of the American Society of Echocardiography. 2014; 27(5): 568-579. https://doi.org/10.1016/j.echo.2014.01.014
  • Hayward R., Hydock D.S. Doxorubicin cardiotoxicity in the rat: an in vivo characterization. Journal of the American Association for Laboratory Animal Science. 2007; 46(4): 20-32.
  • Xian Y.L., Zhang J., Wang L.Y., et al. The role of complement 5A receptor in myocardial injury induced by adriamycin in acute heart failure. Journal of Cardiovascular and Pulmonary Diseases. 2012; 31(2): 209-213.
  • Yang J.Y., Zhang Y.C., Tang J.M., et al. Establishment of heart failure model induced by doxorubicin in rats. Journal of Yunyang Medical College. 2005; 5: 269-271+321.
  • Yang W.Z., Yang H., Liu Y.C., et al. Protective effects of n-butanol fractions of a vaccine on acute heart failure induced by doxorubicin in rats. Chinese Archives of Traditional Chinese Medicine. 2020; 38(10): 86-90.
  • Teraoka K., Hirano M., Yamaguchi K., Yamashina A. Progressive cardiac dysfunction in adriamycin-induced cardiomyopathy rats. European Journal of Heart Failure. 2000; 2(4): 373-378. https://doi.org/10.1016/S1388-9842(00)00111-2
  • Walker J.R., Sharma A., Lytwyn M., et al. The cardioprotective role of probucol against anthracycline and trastuzumab-mediated cardiotoxicity. Journal of the American Society of Echocardiography. 2011; 24(6): 699-705. https://doi.org/10.1016/j.echo.2011.01.018
  • Areshidze D.A., Makarceva L.A., Kucher S.A., Sedov A.A., Gritzunayte A.A., Sakhanova K.A. On heart disease modeling on Wistar rats. Academic science - problems and achievements. Materials of XVIII international scientific conference. 2019; 1-7. [In Russ.]
  • Voronchikhin P.A., Kulikov A.V., Karpov A.A., Sukhorukova E.G., Vaulina D.D., Okovityi S.V., Korzhevskii D.E., Shustov E.B. Model of cardiopulmonary disease on rats. Journal Biomed. 2014; 1(1): 19-26. [In Russ.]
  • Olorundare O., Adeneye A., Akinsola A., et al. African vegetables (Clerodendrum volubile leaf and Irvingia gabonensis seed extracts) effectively mitigate trastuzumab-induced cardiotoxicity in Wistar rats. Oxidative Medicine and Cellular Longevity. 2020; 15. https://doi.org/10.1155/2020/9535426
  • Shen X.Q., Zhang W.D., He Y.L., et al. Effects of trastuzumab on cardiac function in rats. Journal of Shandong University. 2013; 51(12): 11-14+40.
  • Beiranvand E., Ostad S.N., Ardakani E.M., Torkashvand F., Sardari S., Vaziri B. In vivo evaluation of carvedilol cardiac protection against trastuzumab cardiotoxicity. Drug Research. 2020; 70(4): 165-169. https://doi.org/10.1055/a-1110-7034
  • Li P., Yan Y., Shi Y., Cheng B., Zhan Y., Wang Q., et al. Nicotinic agonist inhibits cardiomyocyte apoptosis in CVB3-Induced myocarditis via 34-nAChR/PI3K/Akt-dependent survivin upregulation. Oxidative Medicine and Cellular Longevity. 2019; 9496419. https://doi.org/10.1155/2019/9496419
  • Miyawaki A, Obana M, Mitsuhara Y, Orimoto A, Nakayasu Y, Yamashita T, et al. Adult murine cardiomyocytes exhibit regenerative activity with cell cycle reentry through STAT3 in the healing process of myocarditis. Scientific Reports. 2017; 7:1407. https://doi.org/10.1038/s41598-017-01426-8
  • Gaman D.V., Konopenko M.I., Tubka T.U. Characteristics of cardial morphological ultrastructure in experimental myocardial ischemia. Ukrainian biopharmaceutical journal. 2011; 10(5): 16-20. [In Russ.]
  • Zhou P., Zhang X., Guo M., Guo R., Wang L., Zhang Z., et al. Ginsenoside Rb1 ameliorates CKD-associated vascular calcification by inhibiting the Wnt/β-catenin pathway. 2019; 23: 7088-7098. https://doi.org/10.1111/jcmm.14611
  • Sun Y, Ramires F.J., Weber K.T. Fibrosis of atria and great vessels in response to angiotensin II or aldosterone infusion. Cardiovascular Research. 1997; 35: 138-147. https://doi.org/10.1016/S0008-6363(97)00097-7
  • Shahbaz A.U., Sun Y, Bhattacharya S.K., Ahokas R.A., Gerling I.C., McGee J.E., et al.. Fibrosis in hypertensive heart disease: molecular pathways and cardioprotective strategies. Journal of Hypertension. 2010; 28 (Suppl. 1): 25-32. https://doi.org/10.1097/01.hjh.0000388491.35836.d2
  • Young M., Fullerton M., Dilley R., Funder J. Mineralocorticoids, hypertension, and cardiac fibrosis. Journal of Clinical Investigation. 1994; 93: 2578-2583. https://doi.org/10.1172/JCI117269
  • Garnier A., Bendall J.K., Fuchs S., Escoubet B., Rochais F., Hoerter J., et al. Cardiac specific increase in aldosterone production induces coronary dysfunction in aldosterone synthase-transgenic mice. Circulation. 2004; 110: 1819-1825. https://doi.org/10.1161/01.CIR.0000142858.44680.27
  • Huc T., Drapala A., Gawrys M., Konop M., Bielinska K., Zaorska E., et al. Chronic, low-dose TMAO treatment reduces diastolic dysfunction and heart fibrosis in hypertensive rats. American Journal of Physiology-Heart and Circulatory Physiology. 2018; 315: 1805-1820. https://doi.org/10.1152/ajpheart.00536.2018
  • Wang JJ-C., Rau C., Avetisyan R., Ren S., Romay M.C., Stolin G., et al. Genetic dissection of cardiac remodeling in an isoproterenol-induced heart failure mouse model. PLoS Genetics. 2016; 12: e1006038. https://doi.org/10.1371/journal.pgen.1006038
  • Coste F., Guibert C., Magat J., Abell E., Vaillant F., Dubois M., et al. Chronic hypoxia aggravates monocrotaline-induced pulmonary arterial hypertension: a rodent relevant model to the human severe form of the disease. Respiratory Reseasrch. 2017; 18: 47. https://doi.org/10.1186/s12931-017-0533-x
  • Urboniene D., Haber I., Fang Y.H., Thenappan T., Archer S.L. Validation of high-resolution echocardiography and magnetic resonance imaging vs. high-fidelity catheterization in experimental pulmonary hypertension. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2010; 299: 401-412. https://doi.org/10.1152/ajplung.00114.2010
  • Buermans H.P., Redout E.M., Schiel A.E. et al. Microarray analysis reveals pivotal divergent mRNA expression profiles early in the development of either compensated ventricular hypertrophy or heart failure. Physiological Genomics. 2005; 21: 314-323. https://doi.org/10.1152/physiolgenomics.00185.2004
  • Belenkov Y.N., Privalova E.V., Kaplunova V.Y., Zektser V.Y., Vinogradova N.N., Ilgisonis I.S., Shakaryants G.A., Kozhevnikova M.V., Lishuta A.S. Metabolic Syndrome: Development of the Issue, Main Diagnostic Criteria. Rational Pharmacotherapy in Cardiology. 2018; 14(5): 757-764. [In Russ]. https://doi.org/10.20996/1819-6446-2018-14-5-757-764
  • Buettner R., Scholmerich J., Bollheimer L.C. High-fat Diets: Modeling the Metabolic Disorders of Human Obesity in Rodents. OBESITY. 2007; 15(4): 798808. https://doi.org/10.1038/oby.2007.608
  • Leshchenko D.V., Kostiuk N.V., Belyakova M.B., Egorova E.N., Miniaev M.V., Petrova M.B. Diet-induced animal models of metabolic syndrome (literature review). Upper Volga medical journal. 2015; 14 (2). [In Russ.]
  • Gajda A.M., Pellizzon M.A., Ricci M.R., Ulman E.A. Diet-Induced Metabolic Syndrome in Rodent Models animal. LABNEWS. 2007.
  • Wilson T.A., Nicolosi R.J., Delaney B. et al. Reduced and high molecular weight barley beta-glucans decrease plasma total and non-HDL-cholesterol in hypercholesterolemic Syrian golden hamsters. Journal of Nutrition. 2004; 134(10): 2617-2622. https://doi.org/10.1093/jn/134.10.2617
  • Aydin S., Aksoy A., Aydin S., Kalayci M., Yilmaz M., Kuloglu T., Citil C., Catak Z. Today’s and yesterday’sof pathophysiology: Biochemistry of metabolic syndrome and animal models. Nutrition. 2014; 30 (1): 1-9. https://doi.org/10.1016/j.nut.2013.05.013
  • Reshetnyak M.V., Khirmanov V.N., Zybina N.N. et al. Fructose-fed model of the metabolic syndrome: pathogenetic relationships between metabolic disorders. Medical academic journal. 2011; 11(3): 23-27. [In Russ.]
  • Chang K.C., Liang J.T., Tseng C.D. et al. Aminoguanidine prevents fructose-induced deterioration in left ventricular arterial coupling in Wistar rats. British Journal of Pharmacology. 2007; 151(3): 341-346. https://doi.org/10.1038/sj.bjp.0707223
  • Makarova M.N., Makarov V.G. Diet-induced models of metabolic disorders. Experimental metabolic syndrome. Laboratory animals for science. 2018; 1. https://doi.org/10.29296/2618723X-2018-01-08
  • Laurant P., Touyz R.M. Physiological and pathophysiological role of magnesium in the cardiovascular system: implications in hypertension. Journal of Hypertension. 2000 Sep; 18(9):1177-91. https://doi.org/10.1097/00004872-200018090-00003
  • Joosten M.M., Gansevoort R.T., Bakker S.J.L. Low plasma magnesium and risk of developing chronic kidney disease: results from the PREVEND Study. Kidney international. 2015; 87:6: 1262-1263. https://doi.org/10.1038/ki.2015.33
  • Joosten M.M., Gansevoort R.T., Mukamal K.J. et al. Urinary magnesium excretion and risk of hyperten-sion: the prevention of renal and vascular end-stage disease study. Hypertension. 2013; 61:6: 1161-1167. https://doi.org/10.1161/HYPERTENSIONAHA.113.01333
  • Murasato Y., Harada Y., Ikeda M., Nakashima Y., Hayashida Y. Effect of magnesium deficiency on autonomic circulatory regulation in conscious rats. Hypertension. 1999 Aug; 34(2): 247-52. https://doi.org/10.1161/01.HYP.34.2.247
  • Published

    2023-12-22

    How to Cite

    Zharikov A. Y., Belokurov S. S., Melnikov A. A., Semeryanova E. K., Kalin D. A. ., Garanin S. A. CARDIOVASCULAR DISEASE MODELING: A COMPREHENSIVE LITERATURE REVIEW: УДК 615.32:616.63:616-092.9 // Bulletin of Medical Science, 2023. Vol. 32, № 4. P. 128–138 DOI: 10.31684/25418475-2023-4-128. URL: https://newbmn.asmu.ru/bmn/article/view/644.

    Most read articles by the same author(s)