NEUROPROTECTIVE EFFECT OF THEAFLAVINE IN EXPERIMENTAL CHRONIC CEREBROVASCULAR ACCIDENT

UDC 615.214.3:616-092.9:616.831-005:616.133

Authors

  • Dmitry I. Pozdnyakov Pyatigorsk Medical and Pharmaceutical Institute – branch of the Volgograd State Medical University, Pyatigorsk https://orcid.org/0000-0002-5595-8182 Email: Pozdniackow.dmitry@yandex.ru

DOI:

https://doi.org/10.31684/25418475-2023-2-72

Keywords:

neuroprotection, flavonoids, theaflavin, mitochondrial dysfunction, cerebrovascular disorders

Abstract

Introduction. Theaflavin is a polyphenol derived from black tea, known for its antioxidant properties. The high pharmacological activity of theaflavine, as well as the availability of raw materials, make this compound a promising neuroprotector agent. Materials and methods. The experiment was carried out on male Wistar rats, in which a chronic cerebrovascular accident was modeled by partial bilateral occlusion of the common carotid arteries. Tefalavin was administered orally at doses of 25, 50 and 100 mg/kg after simulation of ischemia and then once a day for 14 days. During the experiment, the following indicators were analyzed: cognitive deficit, changes in brain neurotrophic factor, succinate deigdrogenase and cytochrome c oxidase activity. Results. As a result, the use of theaflavine at a dose of 25 mg / kg was found to contribute to an increase in the activity of succinate dehydrogenase and cytochrome c oxidase of 45.7% (p <0.05) and 100.2% (p <0.05), respectively. The level of brain neurotrophic factor in rats treated with theaflavine was significantly higher dose-independent than in untreated animals. There was also a decrease in cognitive deficits in animals treated with theaflavine. Conclusion. Theaflavin in the experiment has a neuroprotective effect by restoring mitochondrial function and increasing the concentration in the neurotrophic factor of the brain, making it a promising object for further study.

Downloads

Download data is not yet available.

Author information

Dmitry I. Pozdnyakov,
Pyatigorsk Medical and Pharmaceutical Institute – branch of the Volgograd State Medical University, Pyatigorsk

Cand. Sci. (Pharm.), Associate Professor, Head of the Department of Pharmacology with a Course in Clinical pharmacology. Pyatigorsk Medical and Pharmaceutical Institute - branch of the Volgograd State Medical University.
357532, Stavropol Region, Pyatigorsk, Kalinin Ave., 11.
Tel.:8-918-756-08-89.
E-mail: Pozdniackow.dmitry@yandex.ru.
https://orcid.org/0000-0002-5595-8182.

References

  • Thrift AG, Thayabaranathan T, Howard G, Howard VJ, Rothwell PM, Feigin VL, Norrving B, Donnan GA, Cadilhac DA. Global stroke statistics. Int J Stroke. 2017; 12(1): 13-32. https://doi.org/10.1177/1747493016676285.
  • Rabinstein AA. Treatment of Acute Ischemic Stroke. Continuum (Minneap Minn). 2017; 23(1, Cerebrovascular Disease): 62-81. https://doi.org/10.1212/CON.0000000000000420.
  • Caprio FZ, Sorond FA. Cerebrovascular Disease: Primary and Secondary Stroke Prevention. Med Clin North Am. 2019; 103(2): 295-308. https://doi.org/10.1016/j.mcna.2018.10.001
  • Chamorro Á, Lo EH, Renú A, van Leyen K, Lyden PD. The future of neuroprotection in stroke. J Neurol Neurosurg Psychiatry. 2021 Feb; 92(2): 129-135. https://doi.org/10.1136/jnnp-2020-324283.
  • Tan Q., Peng L., Huang Y. Structure–activity relationship analysis on antioxidant and anticancer actions of Theaflavins on human colon cancer cells. J. of Agr. Food Chem. 2019; 67(1): 159–170. https://doi.org/10.1021/acs.jafc.8b05369
  • Grelle G, Otto A, Lorenz M, Frank RF, Wanker EE, Bieschke J. Black tea theaflavins inhibit formation of toxic amyloid-β and α-synuclein fibrils. Biochemistry. 2011; 50(49): 10624-36. https://doi.org/10.1021/bi2012383.
  • Anandhan A, Tamilselvam K, Radhiga T, Rao S, Essa MM., Manivasagam T. Theaflavin, a black tea polyphenol, protects nigral dopaminergic neurons against chronic MPTP/probenecid induced Parkinson's disease. Brain Res. 2012; 1433: 104-13. https://doi.org/10.1016/j.brainres.2011.11.021
  • Wang N, Chen X, Geng D, Huang H, Zhou H. Ginkgo biloba leaf extract improves the cognitive abilities of rats with D-galactose induced dementia. J Biomed Res. 2013; 27(1): 29-36. https://doi.org/10.7555/JBR.27.20120047
  • Voronkov A.V., Pozdnyakov D.I., Nigaryan S.A., Khouri E.I., Miroshnichenko K.A., Sosnovskaya A.V., Olokhova E.A. Evaluation of the mitochondria respirometric function in the conditions of pathologies of various geneses. Pharmacy & Pharmacology. 2019; 7(1): 20-31. https://doi.org/10.19163/2307-9266-2019-7-1-20-31
  • Wang H, Huwaimel B, Verma K, Miller J, Germain T.M., Kinarivala N., Pappas D., Brookes P.S., Trippier P.C. Synthesis and Antineoplastic Evaluation of Mitochondrial Complex II (Succinate Dehydrogenase) Inhibitors Derived from Atpenin A5. ChemMedChem. 2017; 12(13): 1033-1044. https://doi.org/10.1002/cmdc.201700196.
  • Li Y, D'Aurelio M, Deng JH, Park JS, Manfredi G, Hu P, Lu J, Bai Y. An assembled complex IV maintains the stability and activity of complex I in mammalian mitochondria. J Biol Chem. 2007; 282(24): 17557-62. https://doi.org/10.1074/jbc.M701056200
  • Costa LG, Garrick JM, Roquè PJ, Pellacani C. Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More. Oxid Med Cell Longev. 2016; 2016: 2986796. https://doi.org/10.1155/2016/2986796.
  • Nong Y, Huang YQ, Ju W, Kalia LV, Ahmadian G, Wang YT, Salter MW. Glycine binding primes NMDA receptor internalization. Nature. 2003; 422(6929): 302-7. https://doi.org/10.1038/nature01497.
  • Campos AC, Fogaça MV, Sonego AB, Guimarães FS. Cannabidiol, neuroprotection and neuropsychiatric disorders. Pharmacol Res. 2016; 112: 119-127. https://doi.org/10.1016/j.phrs.2016.01.033.
  • Kim JS., Lee KB., Park JH., Sung SM, Oh K., Kim EG, Chang DI, Hwang YH, Lee EJ, Kim WK, Ju C, Kim BS, Ryu JM; SAFE-TPA Investigators. Safety and Efficacy of Otaplimastat in Patients with Acute Ischemic Stroke Requiring tPA (SAFE-TPA): A Multicenter, Randomized, Double-Blind, Placebo-Controlled Phase 2 Study. Ann Neurol. 2020; 87(2): 233-245. https://doi.org/10.1002/ana.25644.
  • Li H, Tang Z, Chu P, Song Y, Yang Y, Sun B, Niu M, Qaed E, Shopit A, Han G, Ma X, Peng J, Hu M, Tang Z. Neuroprotective effect of phosphocreatine on oxidative stress and mitochondrial dysfunction induced apoptosis in vitro and in vivo: Involvement of dual PI3K/Akt and Nrf2/HO-1 pathways. Free Radic Biol Med. 2018; 120: 228-238. https://doi.org/10.1016/j.freeradbiomed.2018.03.014
  • He Z, Ning N, Zhou Q, Khoshnam SE, Farzaneh M. Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med. 2020; 146: 45-58. https://doi.org/10.1016/j.freeradbiomed.2019.11.005
  • Shi C, Fang L, Yew DT, Yao Z, Xu J. Ginkgo biloba extract EGb761 protects against mitochondrial dysfunction in platelets and hippocampi in ovariectomized rats. Platelets. 2010; 21(1): 53-9. https://doi.org/10.3109/09537100903395180.
  • Pereira-Caro G, Moreno-Rojas JM, Brindani N, Del Rio D, Lean MEJ, Hara Y, Crozier A. Bioavailability of Black Tea Theaflavins: Absorption, Metabolism, and Colonic Catabolism. J Agric Food Chem. 2017; 65(26): 5365-5374. https://doi.org/10.1021/acs.jafc.7b01707.
  • Eren-Guzelgun B, Ince E, Gurer-Orhan H. In vitro antioxidant/prooxidant effects of combined use of flavonoids. Nat Prod Res. 2018; 32(12):1446-1450. https://doi.org/10.1080/14786419.2017.1346637.
  • Eghbaliferiz S, Iranshahi M. Prooxidant Activity of Polyphenols, Flavonoids, Anthocyanins and Carotenoids: Updated Review of Mechanisms and Catalyzing Metals. Phytother Res. 2016; 30(9): 1379-91. https://doi.org/10.1002/ptr.5643.
  • Gámez A, Alva N, Carbonell T, Rama R. Extracellular ferritin contributes to neuronal injury in an in vitro model of ischemic stroke. J Physiol Biochem. 2021; 77(4): 539-545. https://doi.org/10.1007/s13105-021-00810-3.
  • Liu B, He W, Liu D. Functional BDNF rs7124442 Variant Regulated by miR-922 is Associated with Better Short-Term Recovery of Ischemic Stroke. Ther Clin Risk Manag. 2019; 15: 1369-1375. https://doi.org/10.2147/TCRM.S225536.
  • Liu Y, Zhu C, Guo J, Chen Y, Meng C. The Neuroprotective Effect of Irisin in Ischemic Stroke. Front Aging Neurosci. 2020; 12: 588958. https://doi.org/10.3389/fnagi.2020.588958.
  • Wei H, Sun T, Tian Y, Wang K. Ginkgolide B Modulates BDNF Expression in Acute Ischemic Stroke. J Korean Neurosurg Soc. 2017; 60(4): 391-396. https://doi.org/10.3340/jkns.2016.1010.018
  • Published

    2023-06-26

    How to Cite

    Pozdnyakov D. I. NEUROPROTECTIVE EFFECT OF THEAFLAVINE IN EXPERIMENTAL CHRONIC CEREBROVASCULAR ACCIDENT: UDC 615.214.3:616-092.9:616.831-005:616.133 // Bulletin of Medical Science, 2023. Vol. 30, № 2. P. 72–78 DOI: 10.31684/25418475-2023-2-72. URL: https://newbmn.asmu.ru/bmn/article/view/573.