Статья посвящена исследованию синдрома кардиотоксичности, индуцированного доксорубицином. Кардиотоксичность является серьезным побочным эффектом химиотерапевтического препарата доксорубицина, который широко используется для лечения различных типов рака. Однако его токсичное воздействие на сердечную мышцу ограничивает терапевтический потенциал и требует дальнейшего изучения. В работе представлены результаты экспериментов, в которых исследуются изменения в структуре и функции сердца после введения доксорубицина. Оценка включает морфологические изменения миокарда, а также изменения в уровне кардиомаркеров, таких как тропонин и креатинкиназа. Также рассматриваются молекулярные механизмы, лежащие в основе кардиотоксичности, включая окислительный стресс, воспаление и апоптоз кардиомиоцитов. Выводы из проведенного исследования имеют важное значение для разработки новых терапевтических стратегий, направленных на снижение кардиотоксичности и повышение безопасности применения доксорубицина в клинической практике. В обзоре использованы сведения по теме из публикаций на основе баз данных PubMed и Google Scholar, глубина охвата 5 лет.
1. Herrmann J. Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nat Rev Cardiol 2020 Aug; 17(8): 474-502. . https://doi.org/10.1038/s41569-020-0348-1. Epub 2020 Mar 30. PMID: 32231332; PMCID: PMC8782611.
2. Carrillo-Estrada M., Bobrowski D., Carrasco R., Nadler M.B., Kalra S., Thavendiranathan P., Abdel-Qadir H. Coronary artery disease in patients with cancer: challenges and opportunities for improvement. Curr Opin Cardiol. 2021 Sep 1; 36(5): 597-608. . https://doi.org/10.1097/HCO.0000000000000878. PMID: 34397466.
3. Anker M.S., Sanz A.P., Zamorano J.L., Mehra M.R., Butler J., Riess H., Coats A.J.S., Anker S.D. Advanced cancer is also a heart failure syndrome: a hypothesis. Eur J Heart Fail 2021 Jan; 23(1): 140-144. . https://doi.org/10.1002/ejhf.2071. PMID: 33247608.
4. Plana J.C., Galderisi M., Barac A., Ewer M.S.,Ky B., Scherrer-Crosbie M., Ganame J., Sebag I.A.,Agler D.A., Badano L.P., Banchs J., Cardinale D.,Carver J., Cerqueira M., JM DC., Edvardsen T.,Flamm S.D., Force T., Griffin B.P., Jerusalem G.,Liu J.E., Magalhaes A., Marwick T., Sanchez L.Y.,Sicari R., Villarraga H.R., Lancellotti P. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr 2014; 27(9): 911-939. . https://doi.org/10.1016/j.echo.2014.07.012.
5. Carvalho C., Santos R.X., Cardoso S., Correia S., Oliveira P.J., Santos M.S., Moreira P.I. Doxorubicin: The Good, the Bad and the Ugly Effect. Curr. Med. Chem 2009; 16: 3267-3285. . https://doi.org/10.2174/092986709788803312.
6. Gabizon A.A., Gabizon-Peretz S., Modaresahmadi S., La-Beck N.M. Thirty years from FDA approval of pegylated liposomal doxorubicin (Doxil/Caelyx): an updated analysis and future perspective. BMJ Oncol 2025 Jan 9; 4(1): e000573. . https://doi.org/10.1136/bmjonc-2024-000573. PMID: 39885941; PMCID: PMC11751825.
7. Nicoletto R.E., Ofner C.M 3rd. Cytotoxic mechanisms of doxorubicin at clinically relevant concentrations in breast cancer cells. Cancer Chemother Pharmacol 2022 Mar; 89(3): 285-311. . https://doi.org/10.1007/s00280-022-04400-y. Epub 2022 Feb 12. PMID: 35150291.
8. Kciuk M., Gielecińska A., Mujwar S., Kołat D., Kałuzińska-Kołat Ż., Celik I., Kontek R. Doxorubicin-An Agent with Multiple Mechanisms of Anticancer Activity. Cells. 2023 Feb 19; 12(4): 659. . https://doi.org/10.3390/cells12040659. PMID: 36831326; PMCID: PMC9954613.
9. Groelly F.J., Fawkes M., Dagg R.A., Blackford A.N., Tarsounas M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer 2023 Feb; 23(2): 78-94. . https://doi.org/10.1038/s41568-022-00535-5. Epub 2022 Dec 5. PMID: 36471053.
10. Espinoza J.A., Kanellis D.C., Saproo S., Leal K., Martinez J.F., Bartek J., Lindström M.S. Chromatin damage generated by DNA intercalators leads to degradation of RNA Polymerase II. Nucleic Acids Res. 2024 May 8; 52(8): 4151-4166. . https://doi.org/10.1093/nar/gkae069. PMID: 38340348; PMCID: PMC11077059.
11. Nitiss J.L., Kiianitsa K., Sun Y., Nitiss K.C., Maizels N. Topoisomerase Assays. Curr Protoc 2021 Oct; 1(10): e250. . https://doi.org/10.1002/cpz1.250. PMID: 34606690; PMCID: PMC8535768.
12. Pommier Y., Nussenzweig A., Takeda S., Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol. 2022 Jun; 23(6): 407-427. . https://doi.org/10.1038/s41580-022-00452-3. Epub 2022 Feb 28. PMID: 35228717; PMCID: PMC8883456.
13. Promonet A., Padioleau I., Liu Y., Sanz L., Biernacka A., Schmitz A.L., Skrzypczak M., Sarrazin A., Mettling C., Rowicka M., Ginalski K., Chedin F., Chen C.L., Lin Y.L., Pasero P. Topoisomerase 1 prevents replication stress at R-loop-enriched transcription termination sites. Nat Commun. 2020 Aug 7; 11(1): 3940. . https://doi.org/10.1038/s41467-020-17858-2. PMID: 32769985; PMCID: PMC7414224.
14. Soliman T.N., Keifenheim D., Parker P.J., Clarke D.J. Cell cycle responses to Topoisomerase II inhibition: Molecular mechanisms and clinical implications. J Cell Biol. 2023 Dec 4; 222(12): e202209125. . https://doi.org/10.1083/jcb.202209125. Epub 2023 Nov 13. PMID: 37955972; PMCID: PMC10641588.
15. Kciuk M., Marciniak B., Kontek R. Irinotecan-Still an Important Player in Cancer Chemotherapy: A Comprehensive Overview. Int. J. Mol. Sci. 2020; 21: 4919. . https://doi.org/10.3390/ijms21144919.
16. Yakkala P.A., Penumallu N.R., Shafi S., Kamal A. Prospects of Topoisomerase Inhibitors as Promising Anti-Cancer Agents. Pharmaceuticals (Basel). 2023 Oct 13; 16(10): 1456. . https://doi.org/10.3390/ph16101456. PMID: 37895927; PMCID: PMC10609717.
17. Okoro C.O., Fatoki T.H. A Mini Review of Novel Topoisomerase II Inhibitors as Future Anticancer Agents. Int J Mol Sci. 2023 Jan 28; 24(3): 2532. . https://doi.org/10.3390/ijms24032532. PMID: 36768852; PMCID: PMC9916523.
18. Dornfeld K., Bjork J., Folkert G., Skildum A., Wallace K.B. Mitochondrial activities play a pivotal role in regulating cell cycle in response to doxorubicin. Cell Cycle 2021 Jun; 20(11): 1067-1079. . https://doi.org/10.1080/15384101.2021.1919839. Epub 2021 May 12. PMID: 33978554; PMCID: PMC8208114.
19. Jelic M.D., Mandic A.D., Maricic S.M., Srdjenovic B.U. Oxidative stress and its role in cancer. J Cancer Res Ther 2021 Jan-Mar; 17(1): 22-28. . https://doi.org/10.4103/jcrt.JCRT_862_16. PMID: 33723127.
20. Chen M.S., Lee R.T., Garbern J.C. Senescence mechanisms and targets in the heart. Cardiovasc Res 2022 Mar 25; 118(5): 1173-1187. . https://doi.org/10.1093/cvr/cvab161. PMID: 33963378; PMCID: PMC8953446.
21. Angsutararux P., Luanpitpong S., Issaragrisil S. Chemotherapy-Induced Cardiotoxicity: Overview of the Roles of Oxidative Stress. Oxid. Med. Cell Longev. 2015; 2015: 795602. . https://doi.org/10.1155/2015/795602.
22. Schirone L., D’Ambrosio L., Forte M., Genovese R., Schiavon S., Spinosa G., Iacovone G., Valenti V., Frati G., Sciarretta S. Mitochondria and Doxorubicin-Induced Cardiomyopathy: A Complex Interplay. Cells 2022; 11: 2000. . https://doi.org/10.3390/cells11132000.
23. Xiao J., Guo S., Wang D., An Q. Fenton-Like Reaction: Recent Advances and New Trends. Chemistry 2024 Apr 25; 30(24): e202304337. . https://doi.org/10.1002/chem.202304337. Epub 2024 Mar 13. PMID: 38373023.
24. Vitale R., Marzocco S., Popolo A. Role of Oxidative Stress and Inflammation in Doxorubicin-Induced Cardiotoxicity: A Brief Account. Int J Mol Sci. 2024 Jul 8; 25(13): 7477. . https://doi.org/10.3390/ijms25137477. PMID: 39000584; PMCID: PMC11242665.
25. Hrdina R., Gersl V., Klimtová I., Simůnek T., Machácková J., Adamcová M. Anthracycline-induced cardiotoxicity. Acta Medica (Hradec Kral.) 2000; 43: 75-82. . https://doi.org/10.14712/18059694.2019.117.
26. Xie L.H., Fefelova N., Pamarthi S.H., Gwathmey J.K. Molecular Mechanisms of Ferroptosis and Relevance to Cardiovascular Disease. Cells 2022; 11: 112726. . https://doi.org/10.3390/cells11172726.
27. Tan C., Tasaka H., Yu K.P., Murphy M.L., Karnofsky D.A. Daunomycin, an antitumor antibiotic, inthe treatment of neoplastic disease. Clinical evaluationwith special reference to childhood leukemia. Cancer 1967; 20: 333-353.
28. Rinehart J.J., Lewis R.P., Balcerzak S.P. Adriamycin cardiotoxicity in man. Ann Intern Med 1974 Oct; 81(4): 475-8. . https://doi.org/10.7326/0003-4819-81-4-475. PMID: 4277990.
29. Lenaz L., Page J.A. Cardiotoxicity of adriamycin and related anthracyclines. Cancer Treat Rev 1976 Sep; 3(3): 111-20. . https://doi.org/10.1016/s0305-7372(76)80018-7. PMID: 822941.
30. Chlebowski R.T. Adriamycin (doxorubicin) cardiotoxicity: a review. West J Med. 1979 Nov; 131(5): 364-8. PMID: 394479; PMCID: PMC1271861.
31. Jensen R.A. Doxorubicin cardiotoxicity: contractile changes after long-term treatment in the rat. J Pharmacol Exp Ther 1986 Jan; 236(1): 197-203. . https://doi.org/10.1016/S0022-3565(25)38810-5. PMID: 3941392.
32. Gebbia N., Flandina C., Leto G., Tumminello F.M., Sanguedolce R., Candiloro V., Gagliano M., Rausa L. The role of histamine in doxorubicin and teniposide-induced cardiotoxicity in dog and mouse. Tumori. 1987 Jun 30; 73(3): 279-87. . https://doi.org/10.1177/030089168707300312. PMID: 3603724.
33. Olson R.D., Mushlin P.S. Doxorubicin cardiotoxicity: analysis of prevailing hypotheses. FASEB J 1990 Oct; 4(13): 3076-86. . https://doi.org/10.1096/fasebj.4.13.2210154. PMID: 2210154.
34. Adachi K., Fujiura Y., Mayumi F., Nozuhara A., Sugiu Y., Sakanashi T., Hidaka T., Toshima H. A deletion of mitochondrial DNA in murine doxorubicin-induced cardiotoxicity. Biochem Biophys Res Commun. 1993 Sep 15; 195(2): 945-51. . https://doi.org/10.1006/bbrc.1993.2135. PMID: 8373427.
35. Jones R.L., Wagner A.J., Kawai A., Tamura K., Shahir A., Van Tine B.A., Martín-Broto J., Peterson P.M., Wright J., Tap W.D. Prospective Evaluation of Doxorubicin Cardiotoxicity in Patients with Advanced Soft-tissue Sarcoma Treated in the ANNOUNCE Phase III Randomized Trial. Clin Cancer Res. 2021 Jul 15; 27(14): 3861-3866. . https://doi.org/10.1158/1078-0432.CCR-20-4592. Epub 2021 Feb 25. PMID: 33632930; PMCID: PMC8282740.
36. Esmee de Baat E.C., Mulder R.L., Armenian S., Feijen E.A., Grotenhuis H., Hudson M.M., Mavinkurve-Groothuis A.M., Kremer L.C., van Dalen E.C. Dexrazoxane for preventing or reducing cardiotoxicity in adults and children with cancer receiving anthracyclines. Cochrane Database Syst Rev 2022 Sep 27; 9(9): CD014638. . https://doi.org/10.1002/14651858.CD014638.pub2. PMID: 36162822; PMCID: PMC9512638.
37. Cochran B.J., Ong K.L., Manandhar B., Rye K.A. APOA1: a Protein with Multiple Therapeutic Functions. Curr Atheroscler Rep. 2021 Feb 16; 23(3): 11. . https://doi.org/10.1007/s11883-021-00906-7. PMID: 33591433.
38. Bhale A.S., Venkataraman K. Leveraging knowledge of HDLs major protein ApoA1: Structure, function, mutations, and potential therapeutics. Biomed Pharmacother. 2022 Oct; 154: 113634. . https://doi.org/10.1016/j.biopha.2022.113634. Epub 2022 Sep 2. PMID: 36063649.
39. Liu D., Ding Z., Wu M., Xu W., Qian M., Du Q., Zhang L., Cui Y., Zheng J., Chang H., Huang C., Lin D., Wang Y. The apolipoprotein A-I mimetic peptide, D-4F, alleviates ox-LDL-induced oxidative stress and promotes endothelial repair through the eNOS/HO-1 pathway. J Mol Cell Cardiol. 2017 Apr; 105: 77-88. . https://doi.org/10.1016/j.yjmcc.2017.01.017. Epub 2017 Mar 6. PMID: 28274624.
40. Hamid T., Ismahil M.A., Bansal S.S., Patel B., Goel M., White C.R., Anantharamaiah G.M., Prabhu S.D. The Apolipoprotein A-I Mimetic L-4F Attenuates Monocyte Activation and Adverse Cardiac Remodeling after Myocardial Infarction. Int J Mol Sci 2020 May 15; 21(10): 3519. . https://doi.org/10.3390/ijms21103519. PMID: 32429244; PMCID: PMC7279031.
41. Kristina K. Durham, George Kluck, Kei Cheng Mak, Yak D. Deng, and Bernardo L. Trigatti. Treatment with apolipoprotein A1 protects mice against doxorubicin-induced cardiotoxicity in a scavenger receptor class B, type I-dependent manner. Am J Physiol Heart Circ Physiol 2019 Jun 1; 316(6): H1447-H1457. . https://doi.org/10.1152/ajpheart.00432.2018.
42. Kristina Durham, Cyrus Thomas, and Bernardo L Trigatti. Abstract 18: Increasing in vivo Apoa1/HDL Levels Negates the Cardiotoxic Effects of Doxorubicin, and Involves Signalling Through SR-BI, PI3K, and AKT1. AHA/ASA Journals Published 21 October 2015. . https://doi.org/10.1161/res.117.suppl_1.18.