В данной обзорной статье представлен комплексный анализ современных исследований, посвященных диабетической кардиомиопатии (ДКМ) или, как советует Европейское общество кардиологов, диабетической дисфункции миокарда (ДДМ), а также связанной с ней сердечной недостаточности. Статья начинается с обзора патофизиологических механизмов, лежащих в основе ДКМ, включая влияние гипергликемии, окислительного стресса, ишемии и ремоделирования сердца. Далее рассматриваются современные методы диагностики, такие как эхокардиография, магнитно-резонансная томография и биомаркеры, подчеркивая важность раннего выявления и мониторинга. В заключительной части статьи обсуждаются стратегии лечения ДКМ, включая модификацию образа жизни, контроль гликемии, применение современных сахароснижающих препаратов и ингибиторов ренин-ангиотензиновой системы. Также в статье уделяется внимание новым подходам, в частности использованию миРНК и клеточных терапий, а также перспективам исследований в области персонализированной медицины. Анализировались сведения по теме из публикаций на основе баз данных PubMed, Google Scholar и eLIBRARY, глубина охвата 35 лет.
Kannel W.B., Hjortland M., Castelli W.P. Role of diabetes in congestive heart failure: The Framingham study. Am. J. Cardiol. 1974; 34: 29-34https://doi.org/10.1016/0002-9149(74)90089-7
Shah A.D., Langenberg C., Rapsomaniki E., Denaxas S., Pujades-Rodriguez M., Gale C.P. et al. Type 2 diabetes and incidence of cardiovascular diseases: A cohort study in 1.9 million people. Lancet Diabetes Endocrinol. 2015; 3: 105-113https://doi.org/10.1016/S2213-8587(14)70219-0
Kristensen S.L., Preiss D., Jhund P.S., Squire I., Cardoso J.S., Merkely B. et al. PARADIGM-HF Investigators and Committees. Risk related to pre-diabetes mellitus and diabetes mellitus in heart failure with reduced ejection fraction: Insights from Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure trial. Circ Heart Fail. 2016; 9: e002560https://doi.org/10.1161/CIRCHEARTFAILURE.115.002560
Rubler S., Dlugash J., Yuceoglu Y.Z., Kumral T., Branwood A.W., Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972; 30: 595https://doi.org/10.1016/0002-9149(72)90595-4
Seferović P.M., Paulus W.J., Rosano G., Polovina M., Petrie M.C., Jhund P.S., Tschöpe C., Sattar N., Piepoli M., Papp Z., Standl E., Mamas M.A., Valensi P., Linhart A., Lalić N., Ceriello A., Döhner W., Ristić A., Milinković I., Seferović J., Cosentino F., Metra M., Coats A.J.S. Diabetic myocardial disorder. A clinical consensus statement of the Heart Failure Association of the ESC and the ESC Working Group on Myocardial & Pericardial Diseases. Eur J Heart Fail. 2024 Sep; 26(9): 1893-1903https://doi.org/10.1002/ejhf.3347. Epub 2024 Jun 19. PMID: 38896048.
McAllister D.A., Read S.H., Kerssens J., Livingstone S., McGurnaghan S., Jhund P. et al. Incidence of hospitalization for heart failure and case-fatality among 3.25 million people with and without diabetes mellitus. Circulation. 2018; 138: 2774-2786https://doi.org/10.1161/CIRCULATIONAHA.118.034986
Pop-Busui R., Januzzi J.L., Bruemmer D., Butalia S., Green J.B., Horton W.B. et al. Heart failure: An underappreciated complication of diabetes. A consensus report of the American Diabetes Association. Diabetes Care. 2022; 45: 1670-1690https://doi.org/10.2337/dci22-0014
Zlobine I., Gopal K., Ussher J.R. Lipotoxicity in obesity and diabetes-related cardiac dysfunction. Biochim Biophys Acta. 2016; 1861: 1555-1568https://doi.org/10.1016/j.bbalip.2016.02.011
Mahabadi A.A., Berg M.H., Lehmann N., Kalsch H., Bauer M., Kara K., Dragano N., Moebus S., Jockel K.H., Erbel R. et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: The Heinz Nixdorf Recall Study. J. Am. Coll. Cardiol. 2013; 61: 1388-1395https://doi.org/10.1016/j.jacc.2012.11.062
Jia G., Hill M.A., Sowers J.R. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circ. Res. 2018; 122: 624-638https://doi.org/10.1161/CIRCRESAHA.117.311586
Tang Z., Wang P., Dong C., Zhang J., Wang X., Pei H. Oxidative Stress Signaling Mediated Pathogenesis of Diabetic Cardiomyopathy. Oxid. Med. Cell. Longev. 2022; 2022: 5913374https://doi.org/10.1155/2022/5913374
Gong W., Zhang S., Chen Y., Shen J., Zheng Y., Liu X., Zhu M., Meng G. Protective role of hydrogen sulfide against diabetic cardiomyopathy via alleviating necroptosis. Free Radic. Biol. Med. 2022; 181: 29-42https://doi.org/10.1016/j.freeradbiomed.2022.01.028
Levine B., Kalman J., Mayer L., Fillit H.M., Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990; 323: 236-241https://doi.org/10.1056/NEJM199007263230405
Min W., Bin Z.W., Quan Z.B., Hui Z.J., Sheng F.G. The signal transduction pathway of PKC/NF-kappa B/c-fos may be involved in the influence of high glucose on the cardiomyocytes of neonatal rats. Cardiovasc Diabetol. 2009; 8: 8https://doi.org/10.1186/1475-2840-8-8
Bertero E., Maack C. Calcium Signaling and Reactive Oxygen Species in Mitochondria. Circulation Research. 2018; 122: 1460-1478https://doi.org/10.1161/CIRCRESAHA.118.310082
Sacre J.W., Franjic B., Jellis C.L., Jenkins C., Coombes J.S., Marwick T.H. Association of cardiac autonomic neuropathy with subclinical myocardial dysfunction in type 2 diabetes. JACC: Cardiovascular Imaging. 2010; 3(12): 1207-1215https://doi.org/10.1016/j.jcmg.2010.09.014
Bernardi S., Michelli A., Zuolo G., Candido R., Fabris B. Update on RAAS modulation for the treatment of diabetic cardiovascular disease. Journal of diabetes research. 2016; 2016: 8917578https://doi.org/10.1155/2016/8917578. Epub 2016 Aug 29.
Palomer X., Salvadó L., Barroso E., Vázquez-Carrera M. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy. Int J Cardiol. 2013 Oct 9; 168(4): 3160-3172https://doi.org/10.1016/j.ijcard.2013.07.150. Epub 2013 Aug 6.
Aronson D. Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertension. 2003; 21(1): 3-12https://doi.org/10.1097/00004872-200301000-00002
Hopf A.E., Andresen C., Kötter S., Isic M., Ulrich K., Sahin S. et al. Diabetes-induced cardiomyocyte passive stiffening is caused by impaired insulin-dependent titin modification and can be modulated by neuregulin-1. Circ Res. 2018; 123: 342-355https://doi.org/10.1161/CIRCRESAHA.117.312166
Michiels C. Endothelial cell function. J. Cell. Physiol. 2003; 196: 430-443https://doi.org/10.1002/jcp.10333
Clyne A.M. Endothelial response to glucose: dysfunction, metabolism, and transport. Biochem Soc Trans. 2021; 49(1): 313-325https://doi.org/10.1042/BST20200611. PMID: 33522573; PMCID: PMC7920920.
Wang M., Li Y., Li S., Lv J. Endothelial Dysfunction and Diabetic Cardiomyopathy. Front Endocrinol (Lausanne). 2022 Apr 7; 13: 851941https://doi.org/10.3389/fendo.2022.851941. PMID: 35464057; PMCID: PMC9021409.
Loncarevic B., Trifunovic D., Soldatovic I., Vujisic-Tesic B. Silent diabetic cardiomyopathy in everyday practice: A clinical and echocardiographic study. BMC Cardiovasc Disord. 2016; 16: 242https://doi.org/10.1186/s12872-016-0395-z
Boonman-de Winter L.J., Rutten F.H., Cramer M.J., Landman M.J., Liem A.H., Rutten G.E. et al. High prevalence of previously unknown heart failure and left ventricular dysfunction in patients with type 2 diabetes. Diabetologia. 2012; 55: 2154-2162https://doi.org/10.1007/s00125-012-2579-0
Segar M.W., Khan M.S., Patel K.V., Butler J., Tang W.H.W., Vaduganathan M. et al. Prevalence and prognostic implications of diabetes with cardiomyopathy in community-dwelling adults. J Am Coll Cardiol. 2021; 78: 1587-1598https://doi .org/10.1016/j.jacc.2021.08.020.
Shang Y., Zhang X., Leng W. et al. Assessment of diabetic cardiomyopathy by cardiovascular magnetic resonance T1 mapping: correlation with leftventricular diastolic dysfunction and diabetic duration. J Diabetes Res. 2017; 2017: 9584278https://doi.org/10.1155/2017/9584278. Epub 2017 Jul 16.
Jensen M.T., Fung K., Aung N., Sanghvi M.M., Chadalavada S., Paiva J.M. et al. Changes in cardiac morphology and function in individuals with diabetes mellitus: The UK Biobank Cardiovascular Magnetic Resonance Substudy. Circ Cardiovasc Imaging. 2019; 12: e009476https://doi.org/10.1161/CIRCIMAGING.119.009476
Ruiz-Hurtado G., Gómez-Hurtado N., Fernández-Velasco M., Calderón E., Smani T., Ordonez A. et al. Cardiotrophin-1 induces sarcoplasmic reticulum Ca(2+) leak and arrhythmogenesis in adult rat ventricular myocytes. Cardiovasc Res. 2012; 96(1): 81-89https://doi.org/10.1093/cvr/cvs234. Epub 2012 Jul 11.
Chen W.J., Greulich S., van der Meer R.W., Rijzewijk L.J., Lamb H.J., de Roos A. et al. Activin A is associated with impaired myocardial glucose metabolism and left ventricular remodeling in patients with uncomplicated type 2 diabetes. Cardiovasc Diabetol. 2013; 17: 150https://doi.org/10.1186/1475-2840-12-150
Akbal E., Özbek M., Günes F., Akyürek Ö., Üreten K.D.T. Serum heart type fatty acid binding protein levels in metabolic syndrome. Endocrine. 2009; 36(3): 433–437https://doi.org/10.1007/s12020-009-9243-6. Epub 2009 Oct 6.
Shaver A., Nichols A., Thompson E., Mallick A., Payne K., Jones C. et al. Role of serum biomarkers in early detection of diabetic cardiomyopathy in the West Virginian Population. Int J Med Sci. 2016; 13(3): 161-168https://doi.org/10.7150/ijms.14141. eCollection 2016.
Ihm S.H., Youn H.J., Shin D.I., Jang S.W., Park C.S., Kim P.J. et al. Serum carboxy-terminal propeptide of type I procollagen (PIP) is a marker of diastolic dysfunction in patients with early type 2 diabetes mellitus. Int J Cardiol. 2007; 122(3): e36-e41https://doi.org/10.1016/j.ijcard.2007.07.057
Ban C.R., Twigg S.M., Franjic B., Brooks B.A., Celermajer D., Yue D.K.M.S. Serum MMP-7 is increased in diabetic renal disease and diabetic diastolic dysfunction. Diabetes Res Clin Pract. 2010; 87: 335-341https://doi.org/10.1016/j.diabres.2010.01.004. Epub 2010 Jan 22.
Adamson C., Welsh P., Docherty K.F., de Boer R.A., Diez M., Drożdż J., Dukát A., Inzucchi S.E., Køber L., Kosiborod M.N., Ljungman C.E.A., Martinez F.A., Ponikowski P., Sabatine M.S., Morrow D.A., Lindholm D., Hammarstedt A., Boulton D.W., Greasley P.J., Langkilde A.M., Solomon S.D., Sattar N., McMurray J.J.V., Jhund P.S. IGFBP-7 and Outcomes in Heart Failure With Reduced Ejection Fraction: Findings From DAPA-HF. JACC Heart Fail. 2023 Mar; 11(3): 291-304https://doi.org/10.1016/j.jchf.2022.09.004. Epub 2022 Nov 9. PMID: 36592046.
Marx N., Federici M., Schütt K., Müller-Wieland D., Ajjan R.A., Antunes M.J., Christodorescu R.M., Crawford C., Di Angelantonio E., Eliasson B., Espinola-Klein C., Fauchier L., Halle M., Herrington W.G., Kautzky-Willer A., Lambrinou E., Lesiak M., Lettino M., McGuire D.K., Mullens W., Rocca B., Sattar N. ESC Scientific Document Group. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Erratum in: Eur Heart J. 2024 Feb 16; 45(7): 518https://doi.org/10.1093/eurheartj/ehad857. PMID: 37622663.
Tzoulaki I., Molokhia M., Curcin V., Little M.P., Millett C.J., Ng A., Hughes R.I., Khunti K., Wilkins M.R., Majeed A. et al. Risk of cardiovascular disease and all cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: Retrospective cohort study using UK general practice research database. BMJ. 2009; 339: b4731https://doi.org/10.1136/bmj.b4731
Cortassa S., Caceres V., Tocchetti C.G. et al. Metabolic remodelling of glucose, fatty acid and redox pathways in the heart of type 2 diabetic mice. J Physiol. 2020; 598(7): 1393-1415https://doi.org/10.1113/JP276824
Lago R.M., Singh P.P., Nesto R.W. Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: A meta-analysis of randomised clinical trials. Lancet. 2007; 370: 1129-1136https://doi.org/10.1016/S0140-6736(07)61514-1
Deacon C.F. Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2020 Nov; 16(11): 642-653https://doi.org/10.1038/s41574-020-0399-8. Epub 2020 Sep 14. PMID: 32929230.
Subrahmanyan N.A., Koshy R.M., Jacob K., Pappachan J.M. Efficacy and Cardiovascular Safety of DPP-4 Inhibitors. Curr Drug Saf. 2021; 16(2): 154-164https://doi.org/10.2174/1574886315999200819150544. PMID: 32819262.
Enzan N., Matsushima S., Kaku H. et al. Beneficial effects of dipeptidyl Peptidase-4 inhibitors on heart failure with preserved ejection fraction and diabetes. JACC Asia. 2023; 3(1): 93-104https://doi.org/10.1016/j.jacasi.2022.09.015
Carnovale C., Mazhar F., Arzenton E. et al. Bullous pemphigoid induced by dipeptidyl peptidase-4 (DPP-4) inhibitors: a pharmacovigilance-pharmacodynamic/pharmacokinetic assessment through an analysis of the vigibase®. Expert Opin Drug Saf. 2019; 18(11): 1099-1108https://doi.org/10.1080/14740338.2019.1668373
Yang F., Qin Y., Wang Y. et al. Metformin inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy. Int J Biol Sci. 2019; 15(5): 1010-1019https://doi.org/10.7150/ijbs.29680
Titus A.S., Ushakumary M.G., Venugopal H., Wang M., Lakatta E.G., Kailasam S. Metformin attenuates Hyperglycaemia‐stimulated pro‐fibrotic gene expression in adventitial fibroblasts via inhibition of Discoidin domain receptor 2. Int J Mol Sci. 2022; 24(1): 585https://doi.org/10.3390/ijms24010585
Tian J., Zhang M., Suo M. et al. Dapagliflozin alleviates cardiac fibrosis through suppressing EndMT and fibroblast activation via AMPKα/TGF–β/Smad signalling in type 2 diabetic rats. J Cell Mol Med. 2021; 25(16): 7642-7659https://doi.org/10.1111/jcmm.16601
Sørensen M.H., Bojer A.S., Jørgensen N.R. et al. Fibroblast growth factor‐23 is associated with imaging markers of diabetic cardiomyopathy and anti‐diabetic therapeutics. Cardiovasc Diabetol. 2020; 19(1): 158https://doi.org/10.1186/s12933-020-01135-z
Kluger A.Y., Tecson K.M., Lee A.Y. et al. Class effects of SGLT2 inhibitors on cardiorenal outcomes. Cardiovasc Diabetol. 2019; 18(1): 99https://doi.org/10.1186/s12933-019-0903-4
Nauck M.A., Quast D.R., Wefers J., Meier J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes state of the art. Mol Metab. 2021; 46: 101102https://doi.org/10.1016/j.molmet.2020.101102
Kremastiotis G., Handa I., Jackson C., George S., Johnson J. Disparate effects of MMP and TIMP modulation on coronary atherosclerosis and associated myocardial fibrosis. Sci Rep. 2021; 11(1): 23081https://doi.org/10.1038/s41598-021-02508-4
Lincoff A.M., Brown-Frandsen K., Colhoun H.M., Deanfield J., Emerson S.S., Esbjerg S., Hardt-Lindberg S., Hovingh G.K., Kahn S.E., Kushner R.F., Lingvay I., Oral T.K., Michelsen M.M., Plutzky J., Tornøe C.W., Ryan D.H. SEL ECT Trial Investigators. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N Engl J Med. 2023 Dec 14; 389(24): 2221-2232https://doi.org/10.1056/NEJMoa2307563. Epub 2023 Nov 11. PMID: 37952131.
Arturi F., Succurro E., Miceli S. et al. Liraglutide improves cardiac function in patients with type 2 diabetes and chronic heart failure. Endocrine. 2017; 57(3): 464-473https://doi.org/10.1007/s12020-016-1166-4
Drucker D.J. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018 Apr 3; 27(4): 740-756https://doi.org/10.1016/j.cmet.2018.03.001. PMID: 29617641.
Filippatos G., Anker S.D., Agarwal R., Ruilope L.M., Rossing P., Bakris G.L. et al.; FIGARO-DKD Investigators. Finerenone reduces risk of incident heart failure in patients with chronic kidney disease and type 2 diabetes: Analyses fr om the FIGARO-DKD trial. Circulation. 2022; 145: 437-447https://doi.org/10.1161/CIRCULATIONAHA.121.057983
Brilla C.G., Rupp H., Funck R., Maisch B. The renin-angiotensinaldosterone system and myocardial collagen matrix remodeling in congestive heart failure. Eur Heart J. 1995; 16: 107-109https://doi.org/10.1093/eurheartj/16.suppl_o.107
Bauersachs J. Heart failure drug treatment: the fantastic four. Eur Heart J. 2021 Feb 11; 42(6): 681-683https://doi.org/10.1093/eurheartj/ehaa1012. PMID: 33447845; PMCID: PMC7878007.
Suematsu Y., Miura S.I., Goto M., Matsuo Y., Arimura T., Kuwano T., Imaizumi S., Iwata A., Yahiro E., Saku K. LCZ696, an angiotensin receptor–neprilysin inhibitor, improves cardiac function with the attenuation of fibrosis in heart failure with reduced ejection fraction in streptozotocin-induced diabetic mice. European journal of heart failure. 2016 Apr; 18(4): 386-393https://doi.org/10.1002/ejhf.474. Epub 2016 Jan 7.
Brandenburg V.M., Rocca H.B., Marx N. Sacubitril/Valsartan in patients with diabetes and heart failure. Deutsche medizinische Wochenschrift (1946). 2016 Oct; 141(22): 1647-1649https://doi.org/10.1055/s-0042-000001
Packer M., Coats A.J., Fowler M.B., Katus H.A., Krum H., Mohacsi P., Rouleau J.L., Tendera M., Castaigne A., Roecker E.B., Schultz M.K. Effect of carvedilol on survival in severe chronic heart failure. New England Journal of Medicine. 2001 May 31; 344(22): 1651-1658https://doi.org/10.1056/NEJM200105313442201
Packer M. β-adrenergic blockade in chronic heart failure: principles, progress, and practice. Progress in cardiovascular diseases. 1998 Jul 1; 41(1): 39-52https://doi.org/10.1016/s0033-0620(98)80030-3
MacFadyen R.J., Barr C.S., Struthers A.D. Aldosterone blockade reduces vascular collagen turnover, improves heart rate variability and reduces early morning rise in heart rate in heart failure patients. Cardiovascular research. 1997 Jul 1; 35(1): 30-34https://doi.org/10.1016/s0008-6363(97)00091-6
Redman L.M., Smith S.R., Burton J.H., Martin C.K., Il’yasova D., Ravussin E. Metabolic Slowing and Reduced Oxidative Damage with Sustained Caloric Restriction Support the Rate of Living and Oxidative Damage Theories of Aging. Cell Metab. 2018; 27: 805-815.e4https://doi.org/10.1016/j.cmet.2018.02.019
Rawshani A., Rawshani A., Franzén S., Sattar N., Eliasson B., Svensson A.M. et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2018; 379: 633-644https://doi.org/10.1056/NEJMoa1800256
Wing R.R., Bolin P., Brancati F.L., Bray G.A., Clark J.M., Coday M. et al.; Look AHEAD Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013; 369: 145-154https://doi.org/10.1056 /NEJMoa1212914.
Suárez-Rivero J.M., Pastor-Maldonado C.J., Povea-Cabello S., Álvarez-Córdoba M., Villalón-García I., Munuera-Cabeza M. et al. Coenzyme Q10 analogues: Benefits and challenges for therapeutics. Antioxidants. 2021; 10(2): 236https://doi.org/10.3390/antiox10020236
Jbrael Y.J., Hamad B.K. Ameliorating impact of coenzyme Q10 on the profile of adipokines, cardiomyopathy, and hematological markers correlated with the glucotoxicity sequelae in diabetic rats. PLoS One. 2024 Jan 16; 19(1): e0296775https://doi.org/10.1371/journal.pone.0296775. PMID: 38227584; PMCID: PMC10790996
Al Saadi T., Assaf Y., Farwati M., Turkmani K., Al-Mouakeh A., Shebli B., Khoja M., Essali A., Madmani M.E. Coenzyme Q10 for heart failure. Cochrane Database Syst Rev. 2021 Feb 3; (2)(2): CD008684. https://doi.org/10.1002/14651858.CD008684.pub3. PMID: 35608922; PMCID: PMC8092430.
Ahmed U., Khaliq S., Ahmad H.U., Ahmad I., Ashfaq U.A., Qasim M., Masoud M.S. Pathogenesis of Diabetic Cardiomyopathy and Role of miRNA. Crit Rev Eukaryot Gene Expr. 2021; 31(1): 79-92https://doi.org/10.1615/CritRevEukaryotGeneExpr.2021037533. PMID: 33639058.
Airhart S., Cade W.T., Jiang H., Coggan A.R., Racette S.B., Korenblat K., Spearie C.A., Waller S., O'Connor R., Bashir A., Ory D.S., Schaffer J.E., Novak E., Farmer M., Waggoner A.D., Dávila-Román V.G., Javidan-Nejad C., Peterson L.R. A Diet Rich in Medium-Chain Fatty Acids Improves Systolic Function and Alters the Lipidomic Profile in Patients With Type 2 Diabetes: A Pilot Study. J Clin Endocrinol Metab. 2016 Feb; 101(2): 504-512https://doi.org/10.1210/jc.2015-3292. Epub 2015 Dec 10.
Gubert F., da Silva J.S., Vasques J.F., de Jesus Gonçalves R.G., Martins R.S., de Sá M.P.L., Mendez-Otero R., Zapata-Sudo G. Mesenchymal Stem Cells Therapies on Fibrotic Heart Diseases. Int. J. Mol. Sci. 2021; 22: 7447https://doi.org/10.3390/ijms22147447
Quevedo H.C., Hatzistergos K.E., Oskouei B.N., Feigenbaum G.S., Rodriguez J.E., Valdes D., Pattany P.M., Zambrano J.P., Hu Q., McNiece I. et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc. Natl. Acad. Sci. USA. 2009; 106: 14022-14027https://doi.org/10.1073/pnas.0903201106.
Gallina C., Turinetto V., Giachino C. A New Paradigm in Cardiac Regeneration: The Mesenchymal Stem Cell Secretome. Stem Cells Int. 2015; 2015: 765846https://doi.org/10.1155/2015/765846