В настоящее время фокус в разработках биоматериалов для регенерации костной ткани сместился на реконструкцию матриц/каркасов, имитирующих естественное костное микроокружение и стимулирующих появление сгустков крови.
Цель. Анализ современных научно-исследовательских работ, посвященных исследованию влияния сгустков крови и биоматериалов, содержащих природные полисахариды с прокоагулянтной (in vitro-активация коагуляции плазмы/крови с появлением сгустка) и/или гемостатической (in vivo-остановка экспериментального кровотечения) активностью/-тями, на восстановление дефектов костной ткани.
Материалы и методы. Литературный обзор основан на анализе данных из баз eLibrary.ru, PubMed, Google Scholar. Ключевые слова, используемые для проведения поиска: «сгусток крови» (blood clot), «природные полисахариды» (native polysaccharides), «биоматериалы» (biomaterials), «водорослевые полисахариды» (algal polysaccharides), «растительные полисахариды» (plant polysaccharides), «гликозаминогликаны» (glycosaminoglycans), «остеокондукция» (osteoconduction), «остеоиндукция» (osteoinduction), «регенерация кости» (bone regeneration), «прокоагулянтная активность» (procoagulant activity), «гемостатическая активность» (hemostatic activity). Даты запросов – май-сентябрь 2025 г., глубина запроса – 2021-2025 годы.
Результаты. Для заживления костной ткани показаны важность наличия сгустков крови в месте дефекта, а также активация биоматериалами коагуляции крови или сокращение времени экспериментального кровотечения. Новые экспериментальные данные демонстрируют: эффективность биоматериалов, содержащих полисахариды водорослевого (альгинат), растительного (целлюлоза, крахмал), животного (хитин/хитозан, гиалуроновая кислота) происхождения, сочетающих прокоагулянтную/гемостатическую и остеогенную активности в исследованиях при восстановлении повреждений костной ткани; перспективность разработок биоматериалов, содержащих водорослевые фукоидан или каррагинан с остеогенной активностью, в сочетании с прокоагулянтно/гемостатически активным хитозаном.
Заключение. Для оптимизации остеогенных свойств композитных биоматериалов разных форм возможно использование некоторых полисахаридов природного происхождения с прокоагулянтной и/или гемостатической активностью.
Xiao L., Ma Y., Crawford R., Mendhi J., Zhang Y., Lu H., Zhao Q., Cao J., Wu C., Wang X., Xiao Y. The interplay between hemostasis and immune response in biomaterial development for osteogenesis. Mater Today. 2022; 54: 202-224. https://doi.org/10.1016/j.mattod.2022.02.010
He W., Ding F., Zhang L., Liu W. In situ osteogenic activation of mesenchymal stem cells by the blood clot biomimetic mechanical microenvironment. Nat Commun. 2025; 16(1): 1162. https://doi.org/10.1038/s41467-025-56513-6
Gugliandolo A., Fonticoli L., Trubiani O., Rajan T.S., Marconi G.D., Bramanti P., Mazzon E., Pizzicannella J., Diomede F. Oral bone tissue regeneration: mesenchymal stem cells, secretome, and biomaterials. Int J Mol Sci. 2021; 22(10): 5236. https://doi.org/10.3390/ijms22105236
Žiaran S., Danišovič Ľ., Hammer N. Editorial: Tissue engineering and regenerative medicine: advances, controversies, and future directions. Front Bioeng Biotechnol. 2025; 13: 1568490. https://doi.org/10.3389/fbioe.2025.1568490.
Melo S.F., Pierrard A., Lifrange F., Caliari M., D'Emal C., Debuisson M., Sardon H., Delvenne P., Lancellotti P., Detrembleur C., Jérôme C., Oury C. Poly(hydroxy-oxazolidone) thermoplastic elastomers for safer, greener and customizable blood-contacting medical devices. Adv Healthc Mater. 2025; 14(23): e2502670. https://doi.org/10.1002/adhm.202502670
Liu C., Sha D., Zhao L., Zhou C., Sun L., Liu C., Yuan Y. Design and improvement of bone adhesive in response to clinical needs. Adv Healthcare Mater. 2024; 13(30): 2401687. https://doi.org/10.1002/adhm.202401687
Biranje S. S., Sun J., Shi Y., Yu S., Jiao H., Zhang M., Wang Q., Wang J., Liu J. Polysaccharide-based hemostats: recent developments, challenges, and future perspectives. Cellulose. 2021; 28(14): 8899-8937. https://doi.org/10.1007/s10570-021-04132-x
Guo Y., Xie X., Li J., Yao S. Recent advances in natural polysaccharide-based hemostatic sponges: a review. Polysaccharides. 2025; 6(2): 25. https://doi.org/10.3390/polysaccharides6020025
Shao H., Wu X., Xiao Y., Yang Y., Ma J., Zhou Y., Chen W., Qin S., Yang J., Wang R., Li H. Recent research advances on polysaccharide-, peptide-, and protein-based hemostatic materials: A review. Int J Biol Macromol. 2024; 261(Pt 1): 129752. https://doi.org/10.1016/j.ijbiomac.2024.129752
Fang Y., Guo W., Ni P., Liu H. Recent research advances in polysaccharide-based hemostatic materials: A review. Int J Biol Macromol. 2024; 271(Pt 2): 132559. https://doi.org/10.1016/j.ijbiomac.2024.132559
Beeharry M.W., Ahmad B. Principles of fracture healing and fixation: a literature review. Cureus. 2024; 16(12): e76250. https://doi.org/10.7759/cureus.76250
Dang Y., Zhang Y., Luo G., Li D., Ma Y., Xiao Y., Xiao L., Wang X. The decisive early phase of biomaterial-induced bone regeneration. Appl Mater Today. 2024; 38: 102236. https://doi.org/10.1016/j.apmt.2024.102236
Liu L., Wang Z., Sun Y., Liu Y., Li T., Zheng Q., Yang J., Dong H., Qi H., Xu Q. Cascade regulation of blood clot stabilization-cell migration-osteogenic differentiation by hollow hydrogels for periodontal bone regeneration and repair. Adv Healthc Mater. 2025; 14(20): e2500614. https://doi.org/10.1002/adhm.202500614
Everts P.A., Podesta L., Lana J.F., Shapiro G., Domingues R.B., van Zundert A., Alexander R.W. The regenerative marriage between high-density platelet-rich plasma and adipose tissue. Int J Mol Sci. 2025; 26(5): 2154. https://doi.org/10.3390/ijms26052154
Oliver D., Dzihan A., Mirko O., Miodrag V., Ivica L., Srdjan N., Predrag R., Mile B., Branko B., Milan M., Milan T., Srdjan S. Bioregenerative autologous scaffold made from bone marrow aspirate concentrate, cancellous bone autograft, platelet-rich plasma, and autologous fibrin to treat non-unions of the femur, humerus, and forearm bones: a case series. Regen Med. 2025; 20(4): 123-131. https://doi.org/10.1080/17460751.2025.2507504
Dalle Carbonare L., Cominacini M., Trabetti E., Bombieri C., Pessoa J., Romanelli M.G., Valenti M.T. The bone microenvironment: new insights into the role of stem cells and cell communication in bone regeneration. Stem Cell Res Ther. 2025; 16(1): 169. https://doi.org/10.1186/s13287-025-04288-4
Shim D.W., Hong H., Cho K.C., Kim S.H., Lee J.W., Sung S.Y. Accelerated tibia fracture healing in traumatic brain injury in accordance with increased hematoma formation. BMC Musculoskelet Disord. 2022; 23(1): 1110. https://doi.org/10.1186/s12891-022-06063-5.
Fujii Y., Yoshida T., Sato A., Ikehata M., Hatori A., Chikazu D., Ghanaati S., Kawase-Koga Y. Platelet-rich fibrin-conditioned medium promotes osteogenesis of dental pulp stem cells through TGF-β and PDGF signaling. Regen Ther. 2025; 30: 100-106. https://doi.org/10.1016/j.reth.2025.05.006
Bayer I.S. Advances in fibrin-based materials in wound repair: A Review. Molecules. 2022; 27(14): 4504. https://doi.org/10.3390/molecules27144504
Siawasch S.A.M., Yu J., Castro A.B., Dhondt R., Teughels W., Temmerman A., Quirynen M. Autologous platelet concentrates in alveolar ridge preservation: A systematic review with meta-analyses. Periodontol. 2000. 2025; 97(1): 104-130. https://doi.org/10.1111/prd.12609
Leiva-Gea L., Lendínez-Jurado A., Sánchez-Palomino P., Delgado-Ramos B., Corte-Torres M.D., Leiva-Gea I., Leiva-Gea A. Guided bone regeneration using a modified occlusive barrier with a window: a case report. Biomimetics (Basel). 2025; 10(6): 386. https://doi.org/10.3390/biomimetics10060386
da Costa N. M. M., Caetano H. I. P., Aguiar L. M., Parisi L., Ghezzi B., Elviri L., Zuardi L.R., de Oliveira P.T., Palioto D. B. The influence of physiological blood clot on osteoblastic cell response to a chitosan-based 3D scaffold - A pilot investigation. Biomimetics. 2024; 9(12): 782. https://doi.org/10.3390/biomimetics9120782
Li Z., Qin B., Liu H., Du S., Liu Y., He L., Xu B., Du L. Mesoporous silica thin film as effective coating for enhancing osteogenesis through selective protein adsorption and blood clotting. Biomed Mater. 2024; 19(5): 055040. https://doi.org/10.1088/1748-605X/ad6ac2
Li S., Man Z., Zuo K., Zhang L., Zhang T. Xiao G., Lu Y., Li W., Li N. Advancement in smart bone implants: the latest multifunctional strategies and synergistic mechanisms for tissue repair and regeneration. Bioact Mater. 2025; 51: 333-382. https://doi.org/10.1016/j.bioactmat.2025.05.004
Gai Y., Yin Y., Guan L., Zhang S., Chen J., Yang J., Zhou H., Li J. Rational design of bioactive materials for bone hemostasis and defect repair. Cyborg Bionic Syst. 2023; 4: 0058. https://doi.org/10.34133/cbsystems.0058
Iliou K., Kikionis S., Ioannou E., Roussis V. Marine biopolymers as bioactive functional ingredients of electrospun nanofibrous scaffolds for biomedical applications. Marine Drugs. 2022; 20(5), 314. https://doi.org/10.3390/md20050314
Deepika B.K., Devi G. Y., Pinto J. R., Bose B., Shenoy P. S. Sulphated polysaccharides and biomaterials: Steering stem cell fate. Carbohydrate Polymers. 2025; 369: 124308. https://doi.org/10.1016/j.carbpol.2025.124308
Wang X., Li H., Mu M., Ye R., Zhou L., Guo G. Recent development and advances on polysaccharide composite scaffolds for dental and dentoalveolar tissue regeneration. Polymer Rev. 2025; 65(1): 47-103. https://doi.org/10.1080/15583724.2024.2401992
Nasiripour S., Pishbin F., Seyyed Ebrahimi S.A. 3D Printing of a self-healing, bioactive, and dual-cross-linked polysaccharide-based composite hydrogel as a scaffold for bone tissue engineering. ACS Appl Bio Mater. 2025; 8(1): 582-599. https://doi.org/10.1021/acsabm.4c01476
Lv S., Yuan X., Xiao J., Jiang X. Hemostasis-osteogenesis integrated Janus carboxymethyl chitin/hydroxyapatite porous membrane for bone defect repair. Carbohydr Polym. 2023; 313: 120888. https://doi.org/10.1016/j.carbpol.2023.120888
Wu M.-H., Wang W., Chao F.-C., Hsieh C.-M., Chen L.-C., Lin H.-L., Ho H.-O., Huang T.-J., Sheu M.-T. One-pot fabrication of sacchachitin for production of TEMPO-oxidized sacchachitin nanofibers (TOSCNFs) utilized as scaffolds to enhance bone regeneration. Carbohydr Polym. 2021; 254: 117270. https://doi.org/10.1016/j.carbpol.2020.117270
Zhang J., Wang Q., Sefat F., Coates P., Zhang W., Zhang X., Song J. Nanofibrous chitin/Andrias davidianus skin secretion bioactive sponges with tunable biodegradation rates for bleeding wounds treatment. Chem Eng J. 2024; 488: 150884. https://doi.org/10.1016/j.cej.2024.150884
Zhang Z., Lin Z., Yu C., Lei S.I., Wang L., Wang F., Gao J., Meng W. Chitosan/oxidized cellulose composite nanofiber sponges: a rapid and effective hemostasis strategy for non-compressible hemorrhage. Carbohydr Polym. 2025; 361: 123655. https://doi.org/10.1016/j.carbpol.2025.123655
Inada L. F., Beneti I. M. Main processes of bone formation and regeneration through molecules and cells as biostimulators in buccomaxillofacial surgery: a systematic review. MedNEXT J Med Health Sci. 2024; 5(S2): 1-7. https://doi.org/10.54448/mdnt24S203
Elmeshreghi T. N., El-Seddawy F. D., Gomaa M., Ezzeldein S. A., Abd El Raouf M. Efficacy of a gelatin-based hemostatic sponge and hydroxyapatite–chitosan nanocomposites (nHAp/CS) on regeneration of radial bone defects in rabbits. Open Veter J. 2025; 15(1): 198. https://doi.org/10.5455/OVJ.2025.v15.i1.19
Lin Y.C., Ramanathan S., Wang H.Y., Lin Y.C., Liu W.C., Jones J.R., Cho N.J., Hu C.C., Chung R.J. Engineered bioactive glass-chitosan hybrid for dual tissue and bone regeneration multifunctional healing. Biomater Adv. 2025; 176: 214340. https://doi.org/10.1016/j.bioadv.2025.214340
Ji M., Yuan Z., Zhu Y., Han F., Zhao C., Yu X., Chen Z., Huang Y., Jiang H., Shi L., Ye C., Wan F., Tao R., Zhou Z. Strontium-based quaternary ammonium salt chitosan particles for ultrafast hemostasis of open fracture. Int J Biol Macromol. 2025; 304(Pt1): 140752. https://doi.org/10.1016/j.ijbiomac.2025.140752
Wang Z., Shi Y., Gao B., Dang Z., Yang S., Chung C. -H., Yu X., Zhou X., Lin Z., Cheang L.H., Tam M.S., Wang H., Zheng X., Wu T. Development of a multi-functional naringin-loaded bioglass/carboxymethyl chitosan/silk fibroin porous scaffold for hemostasis and critical size bone regeneration. Int J Biol Macromol. 2025; 290: 38888. https://doi.org/10.1016/j.ijbiomac.2024.138888
Tang X., Wang Y., Liu N., Deng X., Zhou Z., Yu C., Wang Y., Fang K., Wu, T. Methacrylated carboxymethyl chitosan scaffold containing icariin-loaded short fibers for antibacterial, hemostasis, and bone regeneration. ACS Biomat Sci Eng. 2024; 10(8): 5181-5193. https://doi.org/10.1021/acsbiomaterials.4c00707
Yuan J., He M., Yang J., Li K., Fan K., Luo H., Li B., Chen Y. A multifunctional highly adhesive hydrogel mimicking snail mucus for hemostatic coating. Chem Eng J. 2025; 506: 160110. https://doi.org/10.1016/j.cej.2025.160110
Zhang D., Huang Z., Tong L., Gao F., Huang H., Chen F., Liu C. Self-restoring cryogels used for the repair of hemorrhagic bone defects by modulating blood clots. Chem Eng J. 2024; 490: 151421. https://doi.org/10.1016/j.cej.2024.151421
Yu X., Han F., Feng X., Wang X., Zhu Y., Ye C., Ji M., Chen Z., Tao R., Zhou Z., Wan F. Sea cucumber‐inspired aerogel for ultrafast hemostasis of open fracture. Adv Healthc Mater. 2023; 12(26): 2300817. https://doi.org/10.1002/adhm.202300817
Surroca H. F., Pardo E. C., Ramírez-Andrés L., Nieto-Gonzalez E., Ferrer-Torregrosa J., Nieto-Garcia E. Effect of hyaluronic acid on the acceleration of bone fracture healing: A systematic review. Biomedicines. 2025; 13(6): 1353. https://doi.org/10.3390/biomedicines13061353
Sang F., Liu C., Yan J., Su J., Niu S., Wang S., Zhao Y., Dang Q. Polysaccharide-and protein-based hydrogel dressings that enhance wound healing: A review. Int J biol macromol. 2024; 280(Pt 1): 135482. https://doi.org/10.1016/j.ijbiomac.2024.135482
Zhou Y., Li M., Zheng H., Huang B., Liu G. A photothermal therapy-based composite hydrogel for sequential management of inflammation control and bone regeneration in severe periodontitis. J Mater Chem B. 2025; 13(33): 10225-10238. https://doi.org/10.1039/d5tb01510c
Lv Y., Fu X., Yang C., Yin P., Lei T. Functional hydroxypropyl methyl cellulose-based thermosensitive hydrogels: Biomineralization, procoagulant and antibacterial properties. Int J Biol Macromol. 2025; 318(Pt 4): 145325. https://doi.org/10.1016/j.ijbiomac.2025.145325
Schimper C. B., Pachschwöll P., Maitz M. F., Werner C., Rosenau T., Liebner F. Hemocompatibility of cellulose phosphate aerogel membranes with potential use in bone tissue engineering. Front Bioeng Biotechnol. 2023; 11; 1152577. https://doi.org/10.3389/fbioe.2023.1152577
Liu Z., Liu C., Zhou H., Liang C., Chen W., Bai Y., Ma X., Zhang Y., Yang L. Moldable self-setting and bioactive bone wax for bone hemostasis and defect repair. J Orthop Transl. 2025; 50: 223-234. https://doi.org/10.1016/j.jot.2024.11.009
Huang W., Cheng S., Wang X., Zhang Y., Chen L., Zhang, L. Noncompressible hemostasis and bone regeneration induced by an absorbable bioadhesive self‐healing hydrogel. Adv Funct Mater. 2021; 31(22): 2009189. https://doi.org/10.1002/adfm.202009189
Shokri M., Kharaziha M., Ahmadi Tafti H., Dalili F., Mehdinavaz Aghdam R., Baghaban Eslaminejad M. Engineering wet‐resistant and osteogenic nanocomposite adhesive to control bleeding and infection after median sternotomy. Adv Healthc Mater. 2024; 13(19): 2304349. https://doi.org/10.1002/adhm.202304349
Duan Q., Liu H., Zheng L., Cai D., Huang G., Liu Y., Guo R. Novel resorbable bone wax containing β-TCP and starch microspheres for accelerating bone hemostasis and promoting regeneration. Front Bioeng Biotechnol. 2023; 11: 1105306. https://doi.org/10.3389/fbioe.2023.1105306
Liu P., Wang J., Wang Y., Bai Y., Zhou H., Yang L. Pregelatinized hydroxypropyl distarch phosphate-reinforced calcium sulfate bone cement for bleeding bone treatment. Biomat Sci. 2024; 12(12): 3193-3201. https://doi.org/10.1039/D4BM00195H
Chen Y., Zhao W., Liu Z., Zhou H., Yang Z., Yang L. Self-assembled bioactive glass/starch/GelMA microspheres for hemostasis and bone regeneration in bone trauma emergency treatment. ACS Biomater Sci Eng. 2025; 11(8): 4954-4967. https://doi.org/10.1021/acsbiomaterials.5c00601
Unnikrishnan Meenakshi D., Ganesan P., Joseph P. S., Thekkila‐Veedu S., Pathayappurakkal Mohanan D., George A. M., Kandasamy R., Selvasudha N. Fucoidan‐based hydrogels in pharmaceutical and biomedical applications. In Book - Biopolym Pharm Food Appl. Editor Sougata Jana. 2024; Part 2, Chaper 19: 383-415. https://doi.org/10.1002/9783527848133.ch19
Dutta S.D., Hexiu J., Moniruzzaman M., Patil T.V., Acharya R., Kim J.S., Lim K.T. Tailoring osteoimmunity and hemostasis using 3D-Printed nano-photocatalytic bactericidal scaffold for augmented bone regeneration. Biomaterials. 2025; 316: 122991. https://doi.org/10.1016/j.biomaterials.2024.122991
He G., Chen Z., Chen L., Lin H., Yu C., Zhao T., Luo Z., Zhou Y., Chen S., Yang T., He G., Sui W., Hong Y., Zhao J. Hydroxyapatite/calcium alginate composite particles for hemostasis and alveolar bone regeneration in tooth extraction wounds. PeerJ. 2023; 11: e15606. https://doi.org/10.7717/peerj.15606
Hassanzadeh-Tabrizi S.A. Alginate based hemostatic materials for bleeding management: A review. Int. J. Biol. Macromol. 2024; 274 (Pt I): 133218. https://doi.org/10.1016/j.ijbiomac.2024.133218
Yan M., Pan Y., Lu S., Li X., Wang D., Shao T., Wu Z., Zhou Q. Chitosan-CaP microflowers and metronidazole loaded calcium alginate sponges with enhanced antibacterial, hemostatic and osteogenic properties for the prevention of dry socket after tooth removal. Int J Biol Macromol. 2022; 212: 134-145. https://doi.org/10.1016/j.ijbiomac.2022.05.094
Zhao T., Chen L., Yu C., He G., Lin H., Sang H., Chen Z., Hong Y., Sui W., Zhao J. Effect of injectable calcium alginate–amelogenin hydrogel on macrophage polarization and promotion of jawbone osteogenesis. RSC advances. 2024; 14(3), 2016-2026. https://doi.org/10.1039/D3RA05046G
Wang D., Sun Y., Zhang D., Kong X., Wang S., Lu J., Liu F., Lu S., Qi H., Zhou Q. Root-shaped antibacterial alginate sponges with enhanced hemostasis and osteogenesis for the prevention of dry socket. Carbohydr Polym. 2023; 299: 120184. https://doi.org/10.1016/j.carbpol.2022.120184.
Kostadinova M., Raykovska M., Simeonov R., Lolov S., Mourdjeva M. Recent advances in bone tissue engineering: Enhancing the potential of mesenchymal stem cells for regenerative therapies. Curr Iss Mol Biol. 2025; 47(4): 287. https://doi.org/10.3390/cimb47040287
Hedrich H. C., Hoefinghoff J. U.S. Patent Application No. 19/073,527. Hemostatic sponge. 2025.
Vasuthas K., Kjesbu J.S., Brambilla A., Levitan M., Coron A.E., Fonseca D.M., Strand B.L., Slupphaug G., Rokstad A.M.A. Fucoidan alginate and sulfated alginate microbeads induce distinct coagulation, inflammatory and fibrotic responses. Mater Today Bio. 2025; 31: 101474. https://doi.org/10.1016/j.mtbio.2025.101474
Hamrun N., Herdianto N., Gustiono D., Oktawati S., Kamil K., Marlina E., Ibriana I., Nurfaizah T., Arif A.R., Azalia F., Hasanuddin H. Synthesis, physical characteristics, and biocompatibility test of chitosan-alginate-fucoidan scaffold as an alternative material for alveolar bone substitution. BMC Oral Health. 2025; 25: 1199. https://doi.org/10.1186/s12903-025-06591
Kannan P.R., Sangkert S., Jiang C., Li Y., Zhao R., Iqbal M.Z., Kong X. Ultrasmall zinc oxide nanoparticle-reinforced chitosan-fucoidan scaffolds for enhanced antibacterial activity and accelerated osteogenesis. Int J Biol Macromol. 2025; 310 (Pt 3): 143390. https://doi.org/10.1016/j.ijbiomac.2025.143390
Alizadeh K., Dezvare Y., Kamyab S., Amirian J., Brangule A., Bandere D. Development of composite sponge scaffolds based on carrageenan (CRG) and cerium oxide nanoparticles (CeO2 NPs) for hemostatic applications. Biomimetics. 2023; 8(5): 409. https://doi.org/10.3390/biomimetics8050409
El Halawany M., Khashaba M., AbouGhaly M.H.H., Latif R. Tranexamic acid loaded in a physically crosslinked trilaminate dressing for local hemorrhage control: Preparation, characterization, and in-vivo assessment using two different animal models. Int J Pharm. 2024; 659: 124219. https://doi.org/10.1016/j.ijpharm.2024.124219
Mokhtari H., Tavakoli S., Safarpour F., Kharaziha M., Bakhsheshi-Rad H. R., Ramakrishna S., Berto F. Recent advances in chemically-modified and hybrid carrageenan-based platforms for drug delivery, wound healing, and tissue engineering. Polymers. 2021; 13(11): 1744. https://doi.org/10.3390/polym13111744
Roshanfar F., Hesaraki S., Dolatshahi-Pirouz A. Electrospun silk fibroin/kappa-carrageenan hybrid nanofibers with enhanced osteogenic properties for bone regeneration applications. Biology (Basel). 2022; 11(5): 751. https://doi.org/10.3390/biology11050751
Loukelis K., Papadogianni D., Chatzinikolaidou M. Kappa-carrageenan/chitosan/gelatin scaffolds enriched with potassium chloride for bone tissue engineering. Int J Biol Macromol. 2022; 209 (PtB): 1720-1730. https://doi.org/10.1016/j.ijbiomac.2022.04.129
Vargas-Osorio Z., Ruther F., Chen S., Sengupta S., Liverani L., Michálek M., Galusek D., Boccaccini A.R. Environmentally friendly fabrication of electrospun nanofibers made of polycaprolactone, chitosan and κ-carrageenan (PCL/CS/κ-C). Biomed Mater. 2022; 17(4): 045019. https://doi.org/10.1088/1748-605X/ac6eaa
Vargas-Osorio Z., González Castillo E.I., Mutlu N., Vidomanová E., Michálek M., Galusek D., Boccaccini A.R. Tailorable mechanical and degradation properties of KCl-reticulated and BDDE-crosslinked PCL/chitosan/κ-carrageenan electrospun fibers for biomedical applications: Effect of the crosslinking-reticulation synergy. Int J Biol Macromol. 2024; 265 (Pt 1): 130647. https://doi.org/10.1016/j.ijbiomac.2024.130647