АКВАПОРИНЫ И ИХ РОЛЬ В РЕГУЛЯЦИИ ВОДНОГО ГОМЕОСТАЗА ПЛОДА

УДК 615.3:612.82:618.33

Авторы

  • Л.Е. Обухова Алтайский государственный медицинский университет, г. Барнаул Email: lirisse@yandex.ru
  • Н.И. Барсукова Алтайский государственный медицинский университет, г. Барнаул Email: science@agmu.ru
  • Ю.В. Кореновский Алтайский государственный медицинский университет, г. Барнаул Email: timidin@gmail.com
  • Л.В. Начева Кемеровский государственный медицинский университет, г. Кемерово Email: biology56@mail.ru

Ключевые слова:

аквапорины, плод

Аннотация

Изучение аквапоринов – молекулярных водных каналов – представляет интерес для понимания транспорта воды и растворенных веществ как в организме, так и между матерью и плодом. В обзоре рассмотрены современные данные о семействе аквапоринов, их экспрессия в органах в постэмбриональном онтогенезе, в плодных оболочках, почках, легких, коже плода, их роль в регуляции объема амниотической жидкости.

Скачивания

Данные скачивания пока недоступны.

Информация об авторах

Л.Е. Обухова,
Алтайский государственный медицинский университет, г. Барнаул

д.м.н., профессор кафедры биологии, гистологии, эмбриологии и цитологии Алтайского государственного медицинского университета, г. Барнаул.
656031, г. Барнаул, ул. Папанинцев, 126.
Тел.: (3852) 566927.
E-mail: lirisse@yandex.ru

Н.И. Барсукова,
Алтайский государственный медицинский университет, г. Барнаул

к.м.н., доцент кафедры дерматовенерологии, косметологии и иммунологии Алтайского государственного медицинского университета, г. Барнаул.
656038, г. Барнаул, пр. Ленина, 40.
Тел.: (3852) 566888.
E-mail: science@agmu.ru

Ю.В. Кореновский,
Алтайский государственный медицинский университет, г. Барнаул

к.м.н., доцент, заведующий кафедрой общей и биологической химии, клинической лабораторной диагностики Алтайского государственного медицинского университета, г. Барнаул.
656038, г. Барнаул, пр. Ленина, 40.
Тел.: (3852) 566938.
E-mail: timidin@gmail.com

Л.В. Начева ,
Кемеровский государственный медицинский университет, г. Кемерово

д.б.н., профессор, заведующая кафедрой биологии с основами генетики и паразитологии Кемеровского государственного медицинского университета, г. Кемерово.
650056, г. Кемерово, ул. Ворошилова, 22А.
Тел.: +9039072722.
E-mail: biology56@mail.ru

Библиографические ссылки

  • Agre P., Bonhivers M., Bornia M.J. The aquaporins, bruprints for cellular plumbing systems. J. Biol. Chem. 1998; 273: 14659-14662.
  • Agre P., King L. S., Yasui M. et al. Aquaporin water channels – from atomic structure to clinical medicine. J. Physiol. 2002; 542: 3-16.
  • Agre P. Molecular physiology of water transport: aquaporin nomenclature workshop. Mammalian aquaporins. Biol. Cell. 1997; 89: 2552-2557.
  • Agre P. The aquaporin water channels. Proc. Am. Thorac. Soc. 2006; 3: 5-13.
  • Agre P., Sasaki S., Chrispeels M.J. Aquaporins: a family of water channel proteins. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 1993; 265: 461-466.
  • Amiry-Moghaddam M., Williamson A., Palomba M. et al. Delayed K + clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc. Natl Acad. Sci. USA. 2003; 100: 13615-13620.
  • Auguste K.I., Songwan J., Kazunori U. et al. Greatly impaired migration of implanted aquaporin-4-deficient astroglial cells in mouse brain toward a site of injury. FASEB J. 2007; 21: 108-116.
  • Badaut J. Aquaglyceroporin 9 in brain pathologies. Neuroscience. 2010; 168:1047-1057.
  • Badaut J., Regli L. Distribution and possible roles of aquaporin 9 in the brain. Neuroscience. 2004; 129(4): 971-981.
  • Baird R., Wintour E.M. Placentae with haemophagous zones and water channel proteins: a cautionary tale. Placenta. 2000; 21: 587-588.
  • Bajoria R., Ward S., Sooranna S.R. Influence of vasopressin in the pathogenesis of oligohydramnios-polyhydramnios in monochorionic twins. Eur. J. Obstet. Gynecol. Reprod. Biol. 2004; 113: 49-55.
  • Beall M.H., van den Wijngaard J.P.H.M., van Gemert M.J.C. et al. Amniotic fluid water dynamics. Placenta. 2007; 28: 816-823.
  • Beall M.H., van den Wijngaard J.P.H.M., van Gemert M.J.C. et al. Regulation of amniotic fluid volume. Placenta. 2007; 28: 824-832.
  • Belkacemi L., Beall M.H., Magee T.R. et al. AQP1 gene expression is upregulated by arginine vasopressin and cyclic AMP agonists in trophoblast cells. Life Sci. 2008; 82: 1272-1280.
  • Bienert G.P., Moller A.L., Kristiansen K.A. et al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 2007; 282: 1183-1192.
  • Binder D.K., Yao X., Zador Z. et al. Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia. 2006; 53: 631-636.
  • Blaydon D.C., Lind L.K., Plagnol V. et al. Mutations in AQP5, encoding a water-channel protein, cause autosomal-dominant diffuse nonepidermolytic palmoplantar keratoderma. Am. J. Hum. Genet. 2013; 93: 330- 335.
  • Bloch O., Auguste K.I., Manley G.T. et al. Accelerated progression of kaolin- induced hydrocephalus in aquaporin-4-deficient mice. J. Cereb. Blood Flow Metab. 2006; 26: 1527-1537.
  • Bloch O., Papadopoulos M.C., Manley G.T. et al. Aquaporin-4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess. J. Neurochem. 2005; 95: 254-262.
  • Brace R.A., Cheung C.Y. Regulation of amniotic fluid volume: evolving concepts. Adv. Exp. Med. Biol. 2014; 814: 49-68.
  • Butkus A., Earnest L., Jeyaseelan K. et al. Ovine aquaporin-2: cDNA cloning, ontogeny and control of renal gene expression. Pediatr. Nephrol. 1999; 13: 379-390.
  • Cao X., Yin J., Wang H. et al. Mutation in AQP5, encoding aquaporin 5, causes palmoplantar keratoderma Bothnia type. J. Invest. Dermatol. 2014; 134: 284-287.
  • Carbrey J.M, Agre P. Discovery of the aquaporins and development of the field. Handb. Exp. Pharmacol. 2009; 190: 3-28.
  • Carbrey J.M., Gorelick-Feldman D.A., Kozono D. et al. Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proc. Natl. Acad. Sci. USA. 2003; 100(5): 2945-2950.
  • Cartlidge P. The epidermal barrier. Neonatol. 2000; 5: 273-280.
  • Chou C.L., Knepper M.A., Hoek A.N. et al. Reduced water permeability and altered ultrastruc-ture in thin descending limb of Henle in aquaporin-1 null mice. J. Clin. Invest. 1999; 3: 491-496.
  • Chou C.L., Ma T., Yang B. et al. Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice. Am. J. Physiol. Cell Physiol. 1998; 274: 549-554.
  • Damiano A.E. Review: water channel proteins in the human placenta and fetal membranes. Placenta 32, Supplement B, Trophoblast Research. 2011; 25: 207-211.
  • Damiano A.E, Zotta E., Goldstein J. et al. Water channel proteins AQP3 and AQP9 are present in syncytiotrophoblast of human term placenta. Placenta. 2001; 22: 776-781.
  • Damiano A.E., Zotta E., Ibarra C. Functional and molecular expression Of AQP9 channel and UT-A transporter in normal and preeclamptic human placentas. Placenta. 2006; 27: 1073-1081.
  • Dane B., Yayla M., Dane C. et al. Prenatal diagnosis of Bartter syndrome with biochemical examination of amniotic fluid: case report. Fetal. Diagn. Ther. 2007; 22: 206-208.
  • Devuyst O., Burrow C.R., Smith B.L. et al. Expression of aquaporins-1 and -2 during nephrogenesis and in autosomal dominant polycystic kidney disease. Am. J. Physiol. 1996; 271: 169-183.
  • DiGiovanni S.R., Nielsen S., Christensen E.I. et al. Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat. Proc. Natl. Acad. Sci. USA. 1994; 91: 8984-8988.
  • Dumas M. et al. Hydrating skin by stimulating biosynthesis of aquaporins. J. Drugs Dermatol. 2007; 6: 20-24.
  • Ecelbarger C.A., Terris J., Frindt G. et al. Aquaporin-3 water channel localization and regulation in rat kidney. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 1995; 269: 663-672.
  • Elkjaer M.L., Nejsum L.N., Gresz V. et al. Immunolocalization of aquaporin-8 in rat kidney, liver, testis, epididymis, jejunum, colon, principal bronchi and salivary glands. Am. J. Physiol. Renal Physiol. 2001; 281: 1047-1057.
  • Fushimi K., Uchida S., Hara Y. et al. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature. 1993; 361:549-552.
  • Garcia F., Kierbel A., Larocca M.C. et al. The water channel aquaporin-8 is mainly intracellular in rat hepatocytes, and its plasma membrane insertion is stimulated by cyclic AMP. J. Biol. Chem. 2001; 276: 12147-12152.
  • Gonen T., Walz T. The structure of aquaporins. Q. Rev. Biophys. 2006;39(4): 361-396.
  • Goodwin J.W., Godden J.O., Chance G.W. Perinatal medicine: the basic science underlying clinical practice. Baltimore: The Williams and Wilkins Co; 1976:617.
  • Haj-Yasein N.N., Vindedal G.F., Eilert-Olsen F. et al. Glial-conditional deletion of aquaporin-4 (AQP4) reduces blood–brain water uptake and confers barrier function on perivascular astrocyte end feet. Proc. Natl. Acad. Sci. USA. 2011; 108: 17815-17820.
  • Hara-Chikuma M., Verkman A.S. Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J. Mol. Med. 2008; 86: 221-231.
  • Hara-Chikuma M., Chikuma S., Sugiyama Y. et al. Chemokine-dependent T cell migration requires aquaporin-3-mediated hydrogen peroxide uptake. J. Exp. Med. 2012; 209: 1743-1752.
  • Hara M., Verkman A.S. Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice. Proc. Natl Acad. Sci. USA. 2003; 100: 7360-7365.
  • Hara-Chikuma M., Funahashi T., Shimomura I. Progressive adipocyte hypertrophy in aquaporin7-deficient mice: adipocyte glycerol permeability as a novel regulator of fat accumulation. J. Biol. Chem. 2005; 280: 15493-15496.
  • Harding R., Hooper S.B. Lung development and maturation. In Fetal medicine: Basic science and clinical practice. Edited by: Rodeck C.H. and Whittle M.J. Churchill Livingstone. London; 1999: 181-196.
  • Herrera M., Hong N.J., Garvin J.L. Aquaporin-1 transports NO across cell membranes. Hypertension. 2006; 48: 157-164.
  • Hibuse T. et al. Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc. Natl. Acad. Sci. USA. 2005; 102: 10993-10998.
  • Holm L.M., Jahn T.P., Moller A. L. et al. NH3 and NH4 + permeability in aquaporin-expressing Xenopus oocytes. Pflugers Arch. 2005; 450: 415-428.
  • Hua Y., Jiang W., Zhang W. et al. Expression and significance of aquaporins during pregnancy. Front. Biosci. (Landmark Ed). 2013; 18: 1373-1383.
  • Hub J.S., Grubmuller H., de Groot B.L. Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? Handb. Exp. Pharmacol. 2009; 57-76.
  • Iliff J.J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid-β. Sci. Transl. Med. 2012; 4: 147-148.
  • Ishibashi K., Kuwahara M., Gu Y. et al. Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J. Biol. Chem. 1997; 272: 20782-20786.
  • Ishibashi K., Kuwahara M., Gu Y. et al. Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem. Biophys. Res. Commun. 1998; 244: 268-274.
  • Ishibashi K., Kuwahara M., Kageyama Y. et al. Cloning and functional expression of a second new aquaporin abundantly expressed in testis. Biochem. Biophys. Res. Commun. 1997; 237(3): 714-718.
  • Ishibashi K. New members of mammalian aquaporins: AQP10—AQP12. Handb. Exp. Pharmacol. 2009; 190: 251-262.
  • Ishibashi K., Yamauchi K., Kageyama Y. et al. Molecular characterization of human aquaporin-7 gene and its chromosomal mapping. Biochim. Biophys. Acta. 1998; 1399: 62-66.
  • Jelen S., Gena P., Lebek J. et al. Aquaporin-9 and urea transporter A gene deletions affect urea transmembrane passage in murine hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 2012; 303:1279-1287.
  • Jelen S., Gena P., Lebek J. et al. Aquaporin-9 protein is the primary route of hepatocyte glycerol uptake for glycerol gluconeogenesis in mice. J. Biol. Chem. 2011; 286: 44319-44325.
  • Jin B.J., Zhang H., Binder D.K. et al. Aquaporin-4-dependent K + and water transport modeled in brain extracellular space following neuroexcitation. J. Gen. Physiol. 2013;141: 119-132.
  • Johnston H., Koukoulas I., Jeyaseelan K. et al. Ontogeny of aquaporins 1 and 3 in ovine placenta and fetal membranes. Placenta. 2000; 21: 88-99.
  • Katada R., Akdemir G., Asavapanumas N. et al. Greatly improved survival and neuroprotection in aquaporin-4-knockout mice following global cerebral ischemia. FASEB J. 2013; 28: 705-714.
  • Kimura A., Hsu M., Seldin M. et al. Protective role of aquaporin-4 water channels after contusion spinal cord injury. Ann. Neurol. 2010; 67: 794-801.
  • King L.S., Nielsen S., Agre P. Aquaporins in complex tissues. I. Developmental patterns in respiratory and glandular tissues of rat. Am. J. Physiol. 1997; 273: 1541-1548.
  • King L.S., Nielsen S., Agre P. Aquaporin-1 water channel protein in lung: ontogeny, steroid-induced expression, and distribution in rat. Journal of Clinical Investigation. 1996; 97: 2183-2191.
  • King L.S., Yasui M. Aquaporins and disease: lessons from mice to humans. Trends Endocrinol. Metab. 2002; 13: 355-360.
  • Klussmann E., Maric K., Rosenthal W. The mechanisms of aquaporin control in the renal collecting duct. Rev. Physiol. Biochem. Pharmacol. 2000; 141: 33-95.
  • Knepper M.A., Nielsen S., Chou C.L. et al. Mechanism of vasopressin action in the renal collecting duct. Semin. Nephrol. 1994; 14: 302-321.
  • Kobayashi M., Ishibashi O., Tanaka Y. et al. Prolonged disappearance rate of a structurally abnormal mutant insulin from the circulation in humans. J. Clin. Endocrinol. Metab. 1985; 61: 1142-1145.
  • Ko S.B., Uchida S., Naruse S. et al. Cloning and functional expression of rAOP9L a new member of aquaporin family from rat liver. Biochem. Mol. Biol. Int. 1999; 47: 309-318.
  • Lee S.M., Park S.K., Shim S.S. et al. Measurement of fetal urine production by three-dimensional ultrasonography in normal pregnancy. Ultrasound. Obstet. Gynecol. 2007; 30: 281-286.
  • Leitch V., Agre E.P., King L.S. Altered ubiquitination and stability of aquaporin-1 in hypertonic stress. Proceedings of the National Academy of Sciences of the USA. 2001; 98: 2894-2898.
  • Levin M.H., Verkman A.S. Aquaporin-3-dependent cell migration and proliferation during corneal reepithelialization. Invest. Ophthalmol. Vis. Sci. 2006; 47: 4365-4372.
  • Liu H., Hooper S.B., Armugam A. et al. Aquaporin gene expression and regulation in the ovine fetal lung. J. Physiol. 2003; 551: 503-514.
  • Liu H., Koukoulas I., Ross M.C. et al. Quantitative comparison of placental expression of three aquaporin genes. Placenta. 2004; 25: 475-478.
  • Liu H., Wintour E.M. Aquaporins in development — a review. Reprod. Biol. Endocrinol. 2005; 3: 18-19.
  • Liu H., Zheng Z., Wintour E.M. Aquaporins and fetal fluid balance. Рlacenta. 2008; 29: 840-847.
  • Liu Y., Promeneur D., Rojek A. et al. Aquaporin 9 is the major pathway for glycerol uptake by mouse erythrocytes, with implications for malarial virulence. Proc. Natl. Acad. Sci. USA. 2007;104: 12560-12564.
  • Mann S.E., Dvorak N., Gilbert H. et al. Steady-state levels of aquaporin 1 mRNA expression are increased in idiopathic polyhydramnios. Am. J. Obstet. Gynecol. 2006; 194: 884-887.
  • Mann S.E., Ricke E.A., Torres E.A. et al. A novel model of polyhydramnios: amniotic fluid volume is increased in aquaporin 1 knockout mice. Am. J. Obstet. Gynecol. 2005; 192: 2041-2044.
  • Mann S.E., Ricke E.A., Yang B.A. et al. Expression and localization of aquaporin 1 and 3 in human fetal membranes. Am. J. Obstet. Gynecol. 2002; 187:4: 902-907.
  • Maeda N., Hibuse T., Funahashi T. Role of aquaporin-7 and aquaporin-9 in glycerol metabolism: involvement in obesity. Handb. Exp. Pharmacol. 2009: 233-249.
  • Manley G.T., Fujimura M., Noshita N. et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nature Med. 2000: 6: 159-163.
  • Ma T., Hara M., Sougrat R. et al. Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J. Biol. Chem. 1999; 274: 20071-20074.
  • Ma T., Hara M., Sougrat R. et al. Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. J. Biol. Chem. 2002; 277: 17147-17153.
  • Ma T., Song Y., Yang B. et al. Nephrogenic diabetes insipidus in mice lacking aqua-porin-3 water channels. Proc. Natl. Acad. Sci. USA. 2000; 97:4386-4391.
  • Ma T., Yang B., Gillespie A. et al. Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J. Clin. Invest. 1997; 100: 957-962.
  • Ma T., Yang B., Gillesppie A. et al. Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J. Biol. Chem. 1998; 273: 4296-4299.
  • Ma T., Yang B., Kuo W.L. et al. cDNA cloning and gene structure of a novel water channel expresed exclusively in human kidney. Genomics. 1996; 35: 543-550.
  • Marples D., Christensen S., Christensen E.I. et al. Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J. Clin. Invest. 1995; 95:1838-1845.
  • Marples D., Knepper M.A., Christensen E.I. et al. Redistribution of aqu-aporin-2 water channels induced by vasopressin in rat kidney inner medullary collecting duct. Am. J. Physiol. Cell Physiol. 1995; 269: 655-664.
  • Marrades M.P., Milagro F.I., Martinez J.A. et al. Differential expression of aquaporin 7 in adipose tissue of lean and obese high fat consumers. Biochem. Biophys. Res. Commun. 2006; 339: 785-789.
  • Matsuzaki T., Suzuki T., Koyama H. et al. Water channel protein AQP3 is present in epithelia exposed to the environment of possible water loss. J. Histochem. Cytochem. 1999; 47: 1275-1286.
  • Maunsbach A.B., Mapples D., Chin E. et al. Aquaporin-1 water channel expression in human kidney. Journal of the American Society of Nephrology. 1997; 8: 1–14.
  • Miller E.W., Dickinson B.C., Chang C.J. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl. Acad. Sci. USA. 2010; 107: 15681-15686.
  • Moritz K.M., Dodic M., Wintour E.M. Kidney development and the fetal programming of adult disease. Bioessays. 2003; 25: 212-220.
  • Seeds A.E. Current concepts of amniotic fluid dynamics. Am. J. Obstet. Gynecol. 1980; 138: 575-586.
  • Murata К., Mitsuoka К., Hirai Т. et al. Structural determinants of water permeation through aquaporin-1. Nature. 2002; 407: 599-605.
  • Musa-Aziz R., Chen L.M., Pelletier M.F. et al. Relative CO2/NH3 selectivity’s of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc. Natl. Acad. Sci. USA. 2009; 106: 5406–5411.
  • Nielsen S., Agre P. The aquaporin family of water channels in kidney. Kidney International. 1995; 48: 1057-1068.
  • Nielsen S., DiGiovanni S.R., Christensen E.I. et al. Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc. Natl. Acad. Sci. USA. 1993; 90: 11663-11667.
  • Nielsen S., Nagelhus E.A., AmiryMoghaddam M. et al. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J. Neurosci. 1997; 17: 171-180.
  • Nielsen S., Kwon T.H., Christensen B.M. et al. Physiology and pathophysiology of renal aquaporins. J. Am. Soc. Nephrol. 1999; 10: 647-663.
  • Nielsen S., Smith B.L., Christensen E.I. et al. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proceedings of the National Academy of Sciences of the USA. 1993; 90: 7275-7279.
  • Nielsen S., Smith B. L., Christensen E.I. et al. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. Journal of Cell Biology. 1993; 120: 371-383.
  • Pallone T.L., Kishore B. K., Nielsen S. et al. Evidence that aquaporin-1 mediates NaCl-induced water flux across descending vasa recta. American Journal of Physiology. 1997; 272: 587-596.
  • Papadopoulos M.C., Manley G.T., Krishna S. et al. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004; 18: 1291-1293.
  • Papadopoulos M.C., Verkman A.S. Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J. Biol. Chem. 2005; 280: 13906-13912.
  • Papadopoulos M.C., Verkman A.S. Potential utility of aquaporin modulators for therapy of brain disorders. Prog. Brain Res. 2008; 170: 589-601.
  • Promeneur D., Kwon T.H., Yasui M. et al. Regulation of AQP6 mRNA and protein expression in rats in response to altered acidbase or water balance. American Journal of Physiology. Renal Physiology. 2000; 279: 1014-1026.
  • Rash J.E., Yasumura T., Hudson C.S. et al. Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc. Natl. Acad. Sci. USA. 1998; 95: 11981-11986.
  • Ren G., Reddy V. S., Cheng A. et al. Visualization of a water-selective pore by electron crystallography in vitreous ice. Proceedings of the National Academy of Sciences of the USA. 2001; 98: 1398-1403.
  • Saadoun S., Bell B.A., Verkman A.S. et al. Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice. Brain. 2008;131: 1087-1098.
  • Saadoun S. et al. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J. Cell Sci. 2005; 118: 5691-5698.
  • Sabolic I., Katsura T., Verbavatz J.M. et al. The AQP2 water channel: effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats. J. Membr. Biol. 1995; 143: 165-175.
  • Schnermann J., Chou C.L., Ma T. et al. Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc. Natl. Acad. Sci. USA. 1998; 95: 9660-9664.
  • Sha X.Y., Xiong Z.F., Liu H.S. et al. Maternalfetal fluid balance and aquaporins: from molecule to physiology. Act. Pharmacologica Sinica. 2011; 32: 716-720.
  • Shioji M., Fukuda H., Kanzaki T. et al. Reduction of aquaporin-8 on fetal membranes under oligohydramnios in mice lacking prostaglandin F2 alpha receptor. J. Obstet. Gynaecol. Res. 2006; 32: 373-378.
  • Song Y., Sonawane N., Verkman A. S. Localization of aquaporin-5 in sweat glands and functional analysis using knockout mice. J. Physiol. 2002; 541: 561-568.
  • Song Y., Verkman A.S. Aquaporin-5 dependent fluid secretion in airway submucosal glands. J. Biol. Chem. 2001; 276: 41288-41292.
  • Sougrat R., Morand M., Gondran C. et al. Functional expression of AQP3 in human skin epidermis and reconstructed epidermis. J. Invest. Dermatol. 2002; 118: 678-685.
  • Suzuki-Toyota F., Ishibashi K., Yuasa S. Immunohistochemical localization of a water channel, aquaporin 7 (AQP7), in the rat testis. Cell Tissue Res. 1999; 295: 279-285.
  • Tait M.J., Saadoun S., Bell B.A. et al. Increased brain edema in aqp4-null mice in an experimental model of subarachnoid hemorrhage. Neuroscience. 2010; 167: 60-67.
  • Terris J., Ecelbarger C.A., Marples D. et al. Distribution of аquaporin-4 water channel expression within rat kidney. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 1995; 269: 775-785.
  • Thiagarajah J.R., Zhao D., Verkman A.S. Impaired enterocyte proliferation in aquaporin-3 deficiency in mouse models of colitis. Gut. 2007; 56: 1529–1535.
  • Tsukaguchi H., Shayakul C., Berger U.V. et al. Molecular characterization of a broad selectivity neutral solute channel. J. Biol. Chem. 1998; 273(38): 24737-24743.
  • Tsukaguchi H., Weremowicz S., Morton C.C. et al. Functional and molecular characterization of the human neutral solute channel aquaporin-9. Am. J. Physiol. Renal Physiol. 1999; 277: 685-696.
  • Umenishi F., Verkman A.S., Gropper M.A. Quantitative analysis of aquaporin mRNA expression in rat tissues by RNase protection assay. DNA Cell Biol. 1996; 15: 475-480.
  • Van Hoek A.N., Ma T., Yang B. et al. Aquaporin-4 is expressed in basolateral membranes of proximal tubule S3 segments in mouse kidney. Am. J. Physiol. Renal Physiol. 2000; 278: 310-316.
  • Verbavatz J.M., Ma T., Gobin R. et al. Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin-4. J. Cell Sci. 1997; 110:2855-2860.
  • Verkman, A.S. A cautionary note on cosmetics containing ingredients that increase aquaporin 3 expression. Exp. Dermatol. 2008; 17:871-872.
  • Verkman A.S., Anderson M.O., Papadopoulos M.C. Aquaporins: important but elusive drug targets. Nat. Rev. Drug Discov. 2014; 13(4): 259-277.
  • Walz Т., Smith B. L., Agre P. et al. The threedimensional structure of human erythrocyte aquaporin CHIP. EMBO Journal. 1994; 13: 2985-2993.
  • Wang S., Amidi F., Beall M. et al. Aquaporin 3 expression in human fetal membranes and its upregulation by cyclic adenosine monophosphate in amnion epithelial cell culture. J. Soc. Gynecol. Investig. 2006; 13: 181-185.
  • Wang S., Chen J., Beall M. et al. Expression of aquaporin 9 in human chorioamniotic membranes and placenta. Am. J. Obstet. Gynecol. 2004;191: 2160-2167.
  • Wang S., Kallichanda N., Song W. et al. Expression of aquaporin-8 in human placenta and chorioamniotic membranes: evidence of molecular mechanism for intramembranous amniotic fluid resorption. Am. J. Obstet. Gynecol. 2001; 185: 1226-1231.
  • Wang Y., Tajkhorshid E. Nitric oxide conduction by the brain aquaporin AQP4. Proteins. 2010; 78: 661-670.
  • Wintour E.M., Earnest L., Alcorn D. et al. Ovine AQP1: cDNA cloning, ontogeny, and control of renal gene expression. Pediatr. Nephrol. 1998; 12: 545-553.
  • Yamamoto T., Sasaki S., Fushimi К. et al. Vasopressin increases AQP-CD water channel in apical membrane of collecting duct cells in Brattleboro rats. Am. J. Physiol. Cell Physiol. 1995; 268: 1546-1551.
  • Yasui M., Hazama A., Kwon T.H. et al. Rapid gating and anion permeability of an intracellular aquaporin. Nature. 1999;402: 184-187.
  • Yasui M., Kwon T.H., Knepper M.A. et al. Aquaporin-6: an intracellular vesicle water channel protein in renal epithelia. Proc. Natl. Acad. Sci. USA. 1999; 96: 5808-5813.
  • Yool A.J., Weinstein A.M. New roles for old holes: ion channel function in aquaporin-1. News Physiol. Sci. 2002; 17: 68-72.
  • Zhang Y., Ding S., Shen Q. et al. The expression and regulation of aquaporins in placenta and fetal membranes. Front Biosci. (Landmark Ed). 2012; 17: 2371-2382.
  • Zhu N., Jiang S.S., Hu Y.C. et al. Defective macrophage function in aquaporin-3-deficiency. FASEB J. 2011; 25: 4233-4239.
  • Zhu X.Q., Jiang S.S., Hu Y.C. et al. The expression of aquaporin 8 and aquaporin 9 in fetal membranes and placenta in term pregnancies complicated by idiopathic polyhydramnios. Early Hum. Dev. 2010; 86: 657-663.
  • Zhu X.Q., Jiang S.S, Zhu X.J. et al. Expression and localization of aquaporins 8 and 9 in term placenta with oligohydramnios. Reprod. Sci. 2012; 19: 1276-1284.
  • Zhu X.Q., Jiang S.S., Zhu X.J. et al. Expression of aquaporin 1 and aquaporin 3 in fetal membranes and placenta in human term pregnancies with oligohydramnios. Placenta. 2009; 30: 670-676.
  • Загрузки

    Опубликован

    15-12-2020

    Как цитировать

    Обухова . Л., Барсукова Н., Кореновский Ю., Начева Л. АКВАПОРИНЫ И ИХ РОЛЬ В РЕГУЛЯЦИИ ВОДНОГО ГОМЕОСТАЗА ПЛОДА: УДК 615.3:612.82:618.33 // Бюллетень медицинской науки, 2020. Т. 19, № 3. С. 43–53. URL: https://newbmn.asmu.ru/bmn/article/view/93.

    Наиболее читаемые статьи этого автора (авторов)